Article Dans Une Revue Advances in Calculus of Variation Année : 2014

On the relaxation of variational integrals in metric Sobolev spaces

Résumé

We give an extension of the theory of relaxation of variational integrals in classical Sobolev spaces to the setting of metric Sobolev spaces. More precisely, we establish a general framework to deal with the problem of finding an integral representation for relaxed variational functionals of variational integrals of the calculus of variations in the setting of metric measure spaces. We prove integral representation theorems, both in the convex and non-convex case, which extend and complete previous results in the setting of euclidean measure spaces to the setting of metric measure spaces. We also show that these integral representation theorems can be applied in the setting of Cheeger-Keith's differentiable structure.
Fichier principal
Vignette du fichier
Anza_Mandallena_Relaxation_variational_integrals_Adv.Calc.Var._2014.pdf (292.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00959117 , version 1 (05-04-2016)

Identifiants

Citer

Omar Anza Hafsa, Jean-Philippe Mandallena. On the relaxation of variational integrals in metric Sobolev spaces. Advances in Calculus of Variation, 2014, 8 (1), pp.69-91. ⟨10.1515/acv-2013-0207⟩. ⟨hal-00959117⟩
262 Consultations
118 Téléchargements

Altmetric

Partager

More