Reoptimization of minimum and maximum travelling salesman's tours - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2005

Reoptimization of minimum and maximum travelling salesman's tours

Résumé

In this paper, reoptimization versions of the traveling salesman problem (TSP) are addressed. Assume that an optimum solution of an instance is given and the goal is to determine if one can maintain a good solution when the instance is subject to minor modi cations. We study the case where nodes are inserted in, or deleted from, the graph. When inserting a node, we show that the reoptimization problem for MinTSP is approximable within ratio 4/3 if the distance matrix is metric. We show that, dealing with metric MaxTSP, a simple heuristic is asymptotically optimum when a constant number of nodes are inserted. In the general case, we propose a 4=5-approximation algorithm for the reoptimization version of MaxTSP.
Fichier principal
Vignette du fichier
cahier_233.pdf (267.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00957601 , version 1 (10-03-2014)

Identifiants

  • HAL Id : hal-00957601 , version 1

Citer

Giorgio Ausiello, Bruno Escoffier, Jérôme Monnot, Vangelis Paschos. Reoptimization of minimum and maximum travelling salesman's tours. 2005. ⟨hal-00957601⟩
246 Consultations
109 Téléchargements

Partager

More