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Abstract. In this paper, reoptimization versions of the traveling sales-
man problem (TSP) are addressed. Assume that an optimum solution of
an instance is given and the goal is to determine if one can maintain a
good solution when the instance is subject to minor modifications. We
study the case where nodes are inserted in, or deleted from, the graph.
When inserting a node, we show that the reoptimization problem for
MinTSP is approximable within ratio 4/3 if the distance matrix is met-
ric. We show that, dealing with metric MaxTSP, a simple heuristic is
asymptotically optimum when a constant number of nodes are inserted.
In the general case, we propose a 4/5-approximation algorithm for the
reoptimization version of MaxTSP.

1 Introduction

The traveling salesman problem (TSP) is one of the most interesting and par-
adigmatic optimization problems. In both minimization and maximization ver-
sions, TSP has been widely studied and a large bibliography is available (see,
for example, the books [8, 12, 13]). As it is well known, both versions of TSP
are NP-hard but although in the case of MaxTSP the problem is approximable
within constant ratio for all kinds of graphs [4, 10], in the case of MinTSP ap-
proximation algorithms are known only for the metric case [5], i.e., when the
graph distances satisfy the triangle inequality.

In this paper, we deal with reoptimization issue. We consider the case where
instances of a given optimization problem are subject to minor modifications.
The problem we are interested in consists, given an optimum solution on the ini-
tial instance, of trying to maintain efficiently a good solution when the instance
is slightly modified. This issue has already been studied for other optimization
problems such as scheduling problems (see [18, 2], or [3] for practical applica-
tions) and classical polynomial problems where the goal is to recompute the
optimum solution as fast as possible ([6, 11]). It has been recently considered for
MinTSP in [1]. The modifications for TSP consists in adding a new node to the
initial graph (we have a new city to visit), or removing one node from this graph
(a city is dropped from the tour).



More precisely, we suppose that an n node graph G is given and an optimum
solution of MinTSP for G has already been computed. In the problem-version
we deal with, denoted MinTSP+ in the sequel, G is transformed into a graph G′

by adding a new node vn+1 together with all edges connecting vn+1 to any node
of G. How can we reuse the known optimum solution of MinTSP for G in order
to compute a good approximate solution for G′? An analogous problem denoted
MinTSP- consists of reoptimizing MinTSP when a node v in G is deleted together
with all edges incident to it. In [1], Archetti, Bertazzi and Speranza show that
both MinTSP+ and MinTSP- are NP-hard. Moreover they prove that if the
simple best insertion rule is used for updating the previously known optimum
tour, a (tight) 3/2 approximate tour for MinTSP+ in metric case can be obtained
whereas in the general case, they propose some instances leading to the claim
that best insertion rule is not a constant approximation; the same (tight) 3/2
approximation ratio is obtained for MinTSP- in the metric case. In their paper,
the authors of [1] were mainly motivated by the situation where a short amount
of time is available for the reoptimization. However, another interesting question
is to know if the knowledge of an optimum solution for a part of the input graph
leads to strictly better approximation ratios for the whole of the graph than
those achieved in the classical approximation framework.

In this paper we provide new insights for the reoptimization of MinTSP (for
metric graphs), both in the case of a single update and in the case where k new
nodes are inserted (denoted MinTSP+k). For MinTSP+ in metric case we show
that by combining the best insertion heuristics with Christofides’ algorithm the
result of [1] can be outperformed, by achieving approximation ratio 4/3. More-
over, it is possible to show that, for any k, MinTSP+k can be approximated
asymptotically better than 3/2, although, for large values of k, the approxima-
tion ratio converges to Christofides’ bound. On the other hand, dealing with the
general case, we prove that MinTSP+ is not constant approximable. We also
study reoptimization of MaxTSP, by considering the problems MaxTSP+ and
MaxTSP+k for the first time, both in the metric and in the general case (note
that these problems are obviously NP-hard). In particular we show that, in the
metric case, for any k, the best insertion rule is asymptotically optimum; in fact,

for any k, MaxTSP+k can be approximated with ratio
(

1 − O(k)√
n

)

. In the gen-

eral case we can exhibit a 4/5-approximation algorithm, an improvement over
the approximation ratio 61/81, achieved in [4] (under the classical approximation
paradigm). The paper is organized as follows. In the next section, we provide
basic definitions and notation. In Section 3, we address the reoptimization of
MinTSP under single and multiple node insertions. Next, in Section 4, we con-
sider the reoptimization of MaxTSP, first under single node insertion (both in
the metric and in the general case) and subsequently under multiple insertions
(in the metric case). Finally, in Section 5, some results concerning MinTSP- and
MaxTSP- are provided. Concluding remarks are contained in Section 6.

All the missing and sketched proofs are given in the appendix.



2 Preliminaries

In this section we provide the formal definitions of the problems addressed in
the paper, namely Min and MaxTSP+k, Min and MaxTSP-k. Then, we intro-
duce three heuristics, Best Insertion, Longest Insertion, and Nearest Insertion,
classically studied in the literature (see for instance [16, 8]) because they give
rise to fast algorithms to solve TSP, and particularly suitable when dealing with
reoptimization.

Definition 1 (MinTSP+k, MaxTSP+k). We are given an instance (In+k, T ∗
n)

where In+k = (Kn+k, d), Kn+k is a complete graph on n+k nodes {v1, · · · , vn+k},
with nonnegative weights d on the edges, and T ∗

n is an optimum solution of
MinTSP (resp. MaxTSP) on In = (Kn, d), sub-instance of In+k induced by the
nodes {v1, · · · , vn}.

Question : find a shortest (resp. longest) tour for the whole instance In+k.

Definition 2 (MinTSP-k, MaxTSP-k). We are given an instance (In+k, T ∗
n+k)

where In+k = (Kn+k, d), Kn+k is a complete graph on n+k nodes {v1, · · · , vn+k},
with nonnegative weights d on the edges, and T ∗

n+k is an optimum solution of
MinTSP (resp. MaxTSP) on In+k.

Question : find an shortest (resp. longest) tour on In = (Kn, d), sub-instance
of In+k induced by the nodes {v1, · · · , vn}.

For the case k = 1, we simply denote the problems MinTSP+, MaxTSP+,
Min TSP- and MaxTSP-.

For TSP, a particular rapid way to get a tour is to iteratively insert nodes
according to given rules, as the following classical ones.

Definition 3 (Nearest, Longest and Best Insertion rule). Given a tour
T on a graph G = [V, E], and a node v 6∈ V , we insert v in the sequence of nodes
of T as follows:

– Nearest Insertion: we find a node v∗ minimizing d(u, v) for u ∈ V , and insert
v before or after v∗ (choosing the best solution) in the tour;

– Longest Insertion: we find a node v∗ maximizing d(u, v) for u ∈ V , and
insert v before or after v∗ (choosing the best solution) in the tour;

– Best Insertion: we find an edge (u∗, v∗) ∈ T optimizing (d(v, u) + d(v, w) −
d(u, w)) for (u, v) ∈ T , and insert v between u∗ and v∗.

Concerning polynomial approximation of MinTSP in the metric case, it is
shown in [16] that the behavior of Nearest and Best Insertions are quite dif-
ferent since the algorithms based on these two rules are a 2 and a O(log n)
-approximation respectively.

Finally, when nodes are deleted, the most natural way to get a solution from
a tour on the initial instance consists in taking the shortcut.



Definition 4 (Deletion). Given a tour T on a graph G = [V, E], and a node
v ∈ V , deletion consists in building a tour by deleting v in T (removing (u, v)
and (v, w) from T and adding (u, w)).

3 Reoptimizing minimum TSP under node insertions

In this section, we study the reoptimization problems where one node is in-
serted (MinTSP+) and several nodes are inserted (MinTSP+k). We show that
we can improve the result of [1] proving that, in the metric case, MinTSP+ is
approximable within ratio 4/3.

On the contrary, if the distance is not assumed to be metric, then the knowl-
edge of an optimum solution in the initial instance is not useful at all in order
to find an approximate solution of the final instance since MinTSP+ (and con-
sequently MinTSP+k) is not constant approximable (unless P6=NP).

Finally, we generalize the result in the metric case by showing that when k
nodes are inserted we get a (3/2 − 1/(4k + 2))-approximation algorithm.

3.1 One node insertion

When dealing with metric instances of MinTSP+, it is proved in [1] that Best
Insertion gives a 3/2-approximate solution. Actually, we can show that Nearest
Insertion also provides this bound. Of course, running Christofides’ algorithm
on the final instance gives directly also a 3/2-approximate solution. Here we
show that a simple combination of Nearest (or Best) Insertion and Christofides’
algorithm leads to a better approximation ratio.

Theorem 1. In the metric case, MinTSP+ is approximable within ratio 4/3.

Proof. Consider an optimum solution T ∗
n+1 on the whole instance In+1, and the

solution T ∗
n given to us on the sub-instance In.

Let vi and vj be the 2 neighbors of vn+1 in T ∗
n+1, and let T1 be the tour

obtained from T ∗
n with the Nearest Insertion rule.

Using the triangle inequality, we easily get d(T1) ≤ d(T ∗
n+1)+2d(v∗

n+1, vn+1)
where we recall that d(v∗

n+1, vn+1) = min{d(vi, vn+1) : i = 1, · · · , n}. Thus

d(T1) ≤ d(T ∗
n+1) + 2 max{d(vi, vn+1), d(vj , vn+1)} (1)

Now, consider the algorithm of Christofides ([5]) applied on In+1. This gives
a tour T2 of length at most 1/2d(T ∗

n+1)+MST (In+1), where MST (In+1) is the
value of a minimum spanning tree on In+1. Note that MST (In+1) ≤ d(T ∗

n+1)−
max(d(vi, vn+1), d(vj , vn+1)). Hence :

d(T2) ≤
3

2
d(T ∗

n+1) − max(d(vi, vn+1), d(vj , vn+1)) (2)

We take the best solution between T1 and T2. A combination of equations (1)
and (2) with coefficients 1 and 2 gives the expected result.



Obviously, if we apply Best Insertion instead of Nearest Insertion, the same
result holds. Note that the running time of this algorithm is dominated by the
one of Christofides’ algorithm. ⊓⊔

In [1], it is shown that if the distance is not assumed to be metric, then Best
Insertion is not constant approximate for MinTSP+. We strengthen this result
by proving that this holds for any polynomial algorithm.

To do this, we need an intermediate result. Given a graph G = [V, E] where
a, b, s, t ∈ V , and an hamiltonian path of G from a to b, we consider the problem
of determining if there exists an hamiltonian path from s to t. Using a slight
modification of the result of [14], we can show that this problem, denoted by
SHPa,b,s,t in the sequel, is NP-complete (see appendix).

Lemma 1. SHPa,b,s,t is NP-complete (even in bipartite graphs of maximum
degree 5).

This lemma leads to the following inapproximability result.

Theorem 2. In the general case, MinTSP+ is not 2p(n)-approximable, if P6=NP,
for any polynomial p.

Proof. We apply the general method described in [17]. Let ρ > 1. We start
from an instance of SHPa,b,s,t, i.e. a graph Gn = [V, E] with n nodes, four
nodes a, b, s, t, and an hamiltonian path P from a to b. We construct an instance
(In+1, T

∗
n) in the following way:

• If (vi, vj) ∈ E, then d(vi, vj) = 1.
• d(a, b) = 1 and d(vn+1, s) = d(vn+1, t) = 1.
• All the other edges have a weight ρ(n + 1) + 1.

It is clear that T ∗
n = P ∪ {(a, b)} is an optimum solution of In = (Kn, d)

with cost d(T ∗
n) = n. Thus, (In+1, T

∗
n) is an instance of MinTSP+. Let T ∗

n+1

be an optimum solution of (Kn+1, d). Remark that any ρ-approximate solution
allows us to decide if d(T ∗

n+1) = n + 1. However d(T ∗
n+1) = n + 1 iff there is a

hamiltonian path from s to t in Gn. Setting ρ = 2p(n), we obtain the claimed
result. ⊓⊔

3.2 k node insertions

When k nodes are inserted, we can generalize the result of Theorem 1 in the
following way.

Theorem 3. In the metric case, MinTSP+k is approximable within ratio 3/2−
1/(4k + 2)

Proof. Consider the given optimum solution T ∗
n . We apply Nearest Insertion

with a priority rule. In a first step, we sort the vertices to be inserted (and
relabel them) in such a way that for all p > n, there exists vj , j < p such that



d(vp, vj) = min{d(vi, vl) : i ≥ p, l < p}. Note that d(vp, vj) ≤ dmax(T ∗
n+k), where

dmax(T ∗
n+k) is a maximal weighted edge in T ∗

n+k.
Then we insert the k vertices using Nearest Insertion.
For the analysis, note that when inserting vertex vp, we increase the distance

by ∆p ≤ 2d(vp, vj) ≤ 2dmax(T ∗
n+k). We finally get an approximate solution T1

such that

d(T1) ≤ d(T ∗
n) + 2kdmax(T ∗

n+k) ≤ d(T ∗
n+k) + 2kdmax(T ∗

n+k) (3)

Christofides’ algorithm gives a solution T2 such that

d(T2) ≤
3

2
d(T ∗

n+k) − dmax(T ∗
n+k) (4)

We take the best solution between T1 and T2. A combination of equations (3)

and (4) with coefficients 1 and 2k gives d(T ) ≤
(

3
2 − 1

4k+2

)

d(T ∗
n+k).

Note that the computation time of T1 is O(k(n + k)), hence the global com-
plexity is dominated by running Christofides’ algorithm. ⊓⊔

4 Reoptimizing maximum TSP under node insertions

In this section, we consider the reoptimization of the maximization version of
TSP. In the metric case, Best Insertion is a very good strategy since it is as-
ymptotically optimum. Note that the usual MaxTSP problem in the metric case
does not admit a PTAS (using [15]) and that the best algorithms for it are
asymptotically 17/20 (deterministic, [4]) and 7/8 (randomized, [10]).

If the distance is not assumed to be metric, the situation is a bit more compli-
cated. Longest and Best Insertion are only a 1/2-approximation. This situation
is quite disappointing since we can easily prove that iterating Longest Insertion
(from the empty graph) with a priority rule is already a 1/2-approximation for
MaxTSP; however, we can get a polynomial algorithm achieving a ratio of 4/5.
This shows that the knowledge of an optimum solution on the initial instance is
useful since the best algorithm for the usual MaxTSP achieves an approximation
ratio of 61/81 ([4]).

Finally, in section 4.2, we generalize the result in the metric case showing
that if we insert a constant number on nodes, then iterating Best Insertion is
also an asymptotically optimum strategy.

Note that the NP-hardness of all these problems is obvious since otherwise,
starting from the empty graph, we could solve polynomially MaxTSP.

4.1 One node insertion

The central result of this section is the asymptotical optimality of Best Insertion.
It is interesting to note that the behavior of Best and Longest Insertion are quite
different for MaxTSP+ since Longest Insertion is only a 2/3-approximation, even
asymptotically (see appendix).



Proposition 1. For MaxTSP+, in the metric case, Longest Insertion gives a
2/3-approximation, and this bound is tight (even if the graph has an arbitrary
large number of nodes).

Theorem 4. In the metric case, Best Insertion is asymptotically optimum.
More precisely, if the graph has n nodes, then Best Insertion is (1 − O(1/

√
n))-

approximate.

Proof (Sketch).(see appendix for a complete proof) Let T ∗
n be an optimum solu-

tion on the initial instance In, T ∗
n+1 an optimum solution on the final instance

In+1, and T the solution obtained by applying Best Insertion on T ∗
n . Let K =

√
n

and 1 ≤ k ≤ K.
Consider the following subsequence of nodes (ak, · · · , a1, vn+1, b1, · · · , bk) in

T ∗
n+1. Let Jk be the sub-instance of In+1 induced by all the nodes but vn+1,

a1, a2, · · · , ak−1 and b1, b2, · · · , bk−1 (in particular J1 is (Kn, d), the initial graph).
We have :

d(T ∗
n+1) ≤ d(vn+1, a1) + d(vn+1, b1) +

k−1
∑

i=1

d(ai, ai+1) +

k−1
∑

i=1

d(bi, bi+1) + opt(Jk)

where opt(Jk) is the value of an optimum solution on Jk. Indeed, there is an
hamiltonian path in T ∗

n+1 between ak and bk, the value of which is at most
opt(Jk).

Let dk
m(v) be the medium distance between a node v and the nodes in Jk,

i.e., dk
m(v) = 1

|Jk|
∑

vi∈Jk
d(v, vi). Using the triangle inequality, we get that for

any pair (u, v) of nodes (and for any k), d(u, v) ≤ dk
m(u) + dk

m(v). Hence we get
an upper bound on d(T ∗

n+1):

d(T ∗
n+1) ≤ 2

(

dk
m(n + 1) +

k−1
∑

i=1

dk
m(ai) +

k−1
∑

i=1

dk
m(bi)

)

+dk
m(ak)+dk

m(bk)+opt(Jk)

(5)
Now, our goal is to lower bound first d(T ∗

n) and then d(T ) in order to get the
following inequality :

d(T ) ≥
(

1 − O(k)

n

)

(d(T ∗
n+1) − dk

m(ak) − dk
m(bk)) (6)

To achieve this, first consider an optimum solution T ∗(Jk) (of value opt(Jk))
of Jk. Considering a particular subsequence (v1, · · · , v2k−1) of T ∗(Jk), we insert
the 2(k − 1) nodes a1, a2, · · · , ak−1 and b1, b2, · · · , bk−1 in T ∗(Jk) in order to get
the sequence (v1, a1, · · · , ak−1, vk, b1, · · · , bk−1, v2k−1). Considering each node of
Jk as v1, we get with these insertions n − 2(k − 1) tours on In. After a careful
counting of the edges appearing in these tours, one can show that:

d(T ∗
n) ≥ 2

(

k−1
∑

i=1

dk
m(ai) +

k−1
∑

i=1

dk
m(bi)

)

+

(

1 − O(k)

n

)

opt(Jk) (7)



Now, we relate d(T ) and d(T ∗
n). Consider each of the n possible insertions of

vn+1 in T ∗
n . Since each edge of T ∗

n is removed exactly once, we get that nd(T ) ≥
(n− 1)d(T ∗

n)+2
∑n

i=1 d(vn+1, vi). Using
∑n

i=1 d(vn+1, vi) ≥
∑

v∈Jk
d(vn+1, v) =

(n − 2(k − 1))dk
m(n + 1), we get:

d(T ) ≥
(

1 − 1

n

)

d(T ∗
n) + 2

(

1 − 2(k − 1)

n

)

dk
m(n + 1) (8)

From inequalities (5), (7) and (8), we can derive (6).

Inequality (6) is valid for any k. Let us write it for k = 1, · · · , K, and consider
the two following cases :

1. If, for some k, dk
m(ak) + dk

m(bk) ≤ 1
K

d(T ∗
n+1), then we get

d(T ) ≥
(

1 − O(k)

n

)(

1 − 1

K

)

d(T ∗
n+1)

Since k ≤ K =
√

n, we get d(T ) ≥
(

1 − O
(

1√
n

))

d(T ∗
n+1).

2. In the other case, for any k, dk
m(ak) + dk

m(bk) ≥ 1
K

d(T ∗
n+1). However, this

is impossible. Indeed, by making the sum, we get
∑K

k=1 dk
m(ak) + dk

m(bk) ≥
d(T ∗

n+1). But (details are omitted here), one can show that this would lead

to d(T ∗
n) ≥ 2

(

1 − O(K)
n

)

d(T ∗
n+1), which is impossible for n large enough.

✷

From Theorem 4, we get the following corollary.

Corollary 1. MaxTSP+ admits a PTAS in the metric case.

Proof. Let ε > 0. To get a (1 − ε)-approximation algorithm, we just have to
apply Best Insertion on graphs with roughly n ≥ O(1/ε2) nodes, and to solve
optimally the other instances. ⊓⊔

Unfortunately, if the triangle inequality is not assumed, Best Insertion has a
much worse behavior (see appendix).

Proposition 2. For MaxTSP+, in the general case, Best Insertion and Longest
Insertion give a 1/2-approximation, and this bound is tight (even if the graph
has an arbitrary large number of nodes).

However, we can use a more sophisticated algorithm to get a better approx-
imation ratio.

Theorem 5. MaxTSP+ is asymptotically approximable within ratio 4/5.

Proof (Sketch). Assume n even; thus T ∗
n is the sum of two perfect matchings M1

and M2 (if n is odd we can add the remaining edge to each matching. Details
are omitted). Suppose d(M1) ≥ d(M2). We get:



d(M1) ≥
1

2
d(T ∗

n) (9)

Let vi and vj be the neighbors of vn+1 in T ∗
n+1. Consider M∗ = M1 ∪

{(vi, vn+1), (vn+1, vj)}. Obviously, M∗ can be found in polynomial time by guess-
ing nodes vi and vj . Wlog., we can assume that M ∗ does not contain any cycle
(otherwise, (vi, vj) ∈ T ∗

n and thus Best Insertion gives an optimum tour).

Now, consider C = {C1, · · · , Cp}, a 2-matching (i.e., a partition of {v1, · · · , vn+1}
into node disjoint cycles) of maximum weight among the 2-matchings satisfy-
ing (i) {(vi, vn+1), (vn+1, vj)} ⊂ C1 and (ii) |C1| ≥ 6. Such a 2-matching can
be found in polynomial time by testing all the possible subsequences of nodes
(vi′′ , vi′ , vi, vn+1, vj , vj′) (and thanks to the polynomiality of finding a maximum
weight 2-matching, [9]). Obviously, we deduce:

d(C) ≥ d(T ∗
n+1) (10)

Applying the method of Serdyukov [19], we can iteratively for i = 1, · · · , p,
delete an edge ei ∈ Ci, and add this edge to M∗ in such a way that M∗ does not
contain any cycle. Note that in this method we can chose in C1 a deleted edge
not in M∗ that does not create a cycle in P1 (thanks to the length of C1).

At the end, P1 = ∪p
i=1(Ci \{ei}) and P2 = M∗∪p

i=1 {ei} are two collection of
node disjoint paths. Finally, we build two tours T1 and T2 by adding some edges
to P1 and P2 respectively. Taking the best tour, and using inequalities (9) and
(10), we get a tour T3 with:

d(T3) ≥
3

4
d(T ∗

n+1) +
1

4
(d(vi, vn+1) + d(vn+1, vj)) (11)

On the other hand, the Best Insertion gives a tour T4 verifying:

d(T4) ≥
n − 1

n
d(T ∗

n) ≥ n − 1

n
d(T ∗

n+1) −
n − 1

n
(d(vi, vn+1) + d(vn+1, vj)) (12)

Adding inequality (11) with coefficient (n − 1)/n and inequality (12) with
coefficient 1/4 we obtain a tour satisfying d(T ) ≥ 4n−4

5n−4d(T ∗
n+1). ✷

4.2 k node insertions

When several nodes are inserted, we can iteratively use the Best Insertion rule to
obtain an asymptotically optimum solution. This result is based on the following
lemma.

Lemma 2. If Tn is a ρ-approximation on the initial instance on n nodes Gn,

then Best Insertion applied on Tn gives a ρ
(

1 − O(1)√
n

)

-approximate solution (in

the metric case) on the instance Gn+1 on n + 1 nodes.



Proof (Sketch). This is an easy generalization of the proof of theorem 4. Note
that equation (5) and (7) still hold. Then, by taking into account that Tn is a
ρ-approximation, we get, instead of equation (6):

d(T ) ≥ ρ

(

1 − O(k)

n

)

(d(T ∗
n+1) − dk

m(ak) − dk
m(bk)) (13)

The end of the proof is analogous, up to the factor ρ. ✷

Theorem 6. Iterated Best Insertion is a
(

1 − O(k)√
n

)

-approximation algorithm

for MaxTSP+k in the metric case.

Proof. Using proposition 2, we get, after k steps, a solution Tk such that:

d(Tk) ≥
(

1 − O(1)√
n

)k

d(T ∗
n+k) ≥

(

1 − O(k)√
n

)

d(T ∗
n+k)

⊓⊔

Using a similar proof as in corollary 1, we easily get the following result.

Corollary 2. For any constant k (and even for any k = o(
√

n)), MaxTSP+k
admits a PTAS in the metric case.

5 Node deletions

Now, we give a few results concerning the reoptimization problems when nodes
are deleted from the initial graph. Recall that in [1] it is shown that MinTSP-
is NP-hard, even if distances are only 1 and 2, and that deletion is a tight 3/2-
approximation in the metric case. Here, we show that MinTSP- is very hard to
approximate if the triangle inequality doesn’t not hold.

Dealing with MaxTSP-, we show that the problem is NP-hard, and that
deletion is a tight 1/2-approximation algorithm (general and metric cases).

Proposition 3. In the general case, MinTSP- is not 2p(n)-approximable, if P6=NP,
for any polynomial p.

Proof. The proof is a direct adaptation of the one of [1] showing that this prob-
lem is NP-hard. We consider the following problem, shown to be NP -complete
in [14]: given a graph G = [V, E] and an hamiltonian path P between two nodes
a and b in G, determine if there’s an hamiltonian cycle in G.

Given such an instance, we construct an instance on MinTSP-. The node set
of the graph Kn+1 is V ∪ {vn+1}, and the distances are:

– d(vi, vj) = 1 if (vi, vj) ∈ E;
– d(vn+1, a) = d(vn+1, b) = 1;
– Other distances are ρn + 1.



The tour T ∗
n+1 = P ∪ {(vn+1, a), (vn+1, b)} is an optimum solution on In+1 =

(Kn+1, d). Let T ∗
n be an optimum solution on the instance In. Then d(T ∗

n) = n
iff G has an hamiltonian cycle, and a ρ approximate solution allows to decide if
d(T ∗

n) = n. We get the lower bound setting ρ = 2p(n). ⊓⊔

Proposition 4. MaxTSP- is NP -hard, even if distances are only 1 and 2.

Proof. In [1], it is shown that MinTSP- is NP -hard, even if distances are only
1 and 2. We have a trivial reduction from MinTSP- to MaxTSP- if distances
are only 1 and 2: we just have to flip the distances between 1 and 2. Solving
MinTSP- is equivalent to solve MaxTSP- with the new distances. ⊓⊔

As a final result, let us remark that the deletion strategy has the same be-
havior in the metric case and in the general one (see appendix for the proof).

Proposition 5. For MaxTSP-, deletion gives a 1/2-approximation, and this
bound is tight (even if the graph has an arbitrary large number of nodes). These
results hold in the general case as well as in the metric case.

These results might be strengthened, but they seem to indicate that the
knowledge of an optimum solution in the initial instance may not be really
helpful to get good approximation ratios when nodes are deleted.

6 Conclusion

In this article we have proposed some complexity and approximability results
for reoptimization versions of TSP. We have exhibited an interesting asymme-
try between the maximization and the minimization versions: while we get an
almost optimum tour by simply inserting the new node in the right position for
MaxTSP+ (in the metric case), this is not true when dealing with the minimiza-
tion version. One can even show that in order to get an almost optimum solution
for MinTSP+, we need, on some instances, to change n − o(n) edges from the
initial optimum solution. This leads us to conjecture that MinTSP+ does not
admit a PTAS.

Following our approach, an interesting generalization would be to consider
TSP in a fully dynamic situation. Starting from a given solution (optimum or ap-
proximate) on an initial graph, the graph evolves (nodes are added and deleted),
and the goal is to maintain efficiently, along this process, an approximate solu-
tion as good as possible. Some of our results can be easily generalized when
starting from an approximate (instead of optimum) solution, and can be useful
in such approach.
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Appendix

Proof of Lemma 1:

Proof. We reduce the usual s, t-hamiltonian path problem, known to be NP-
complete in general graphs of maximum degree 3 ([7]), to SHPa,b,s,t.

Let G = [V, E] be a graph of maximum degree 3 with node set V = {v1, . . . , vn}.
We construct the bipartite graph H = [V ′, E′] containing n copies H1, . . . , Hn

of the graph depicted in Figure 1.

Hi

vL
i

vR
i

aR
i

aL
i

Fig. 1. The graph Hi.

Finally, we connect the copies together in the following way:

• We add the edge set E2 = {(aL
i , aR

i+1) : i = 1, . . . , n − 1}.
• If (vi, vj) ∈ E, then we add edges (vR

i , vL
j ) and (vL

i , vR
j ).

From this construction we can observe that any hamiltonian path of H must
traversed each copy Hi in one of the two following ways: either P1,i or P2,i (see
Figure 2).

The resulting graph is bipartite (each copy Hi is bipartite and a left node
vL

i is only connected to a right node vR
j ) of maximum degree 5 and the edge set

P ∗ = E2 ∪n
i=1 P2,i induces an hamiltonian path from aR

1 to aL
n in H .

We claim that G has an hamiltonian path from v1 to vn iff H has an hamil-
tonian path from vL

1 to vR
n .

Let P = (vi1 , . . . , vin
) with i1 = 1 and in = n be an hamiltonian path of G.

We build the hamiltonian path P ′ from vL
1 to vR

n in H using the set of paths
∪n

i=1P1,i and the edge set {(vR
ij

, vL
ij+1

) : j = 1, . . . , n − 1}.
Conversely, let P ′ be an hamiltonian path from vL

1 to vL
n in H . Using the

previous property of Hi, we deduce that P ′ must contain all the paths P1,i for
i = 1, . . . , n. Thus, the edge set P = {(vi, vj) : (vR

i , vL
j ) ∈ P ′} is an hamiltonian

path from v1 to vn. ⊓⊔



P1,i

vL
i

vR
i

aR
i

aL
i

vL
i

vR
i

aR
i

aL
i

P1,2

Fig. 2. The two graph hamiltonian path P1,i and P2,i of Hi.

Proof of Proposition 1:
Let vi1 and vj1 be the neighbors of v∗ in T ∗

n and let vi and vj be the neighbors
of vn+1 in T ∗

n+1. By construction of Longest Insertion rule, the produced solution
T1 verifies:

2d(T1) ≥ 2d(T ∗
n)+2d(v∗, vn+1)+d(vi1 , vn+1)+d(vj1 , vn+1)−d(vi1 , v

∗)−d(vj1 , v
∗)

(14)
Let us prove that we also have:

d(T1) ≥
1

2
d(T ∗

n+1) +
1

2
(d(vi, vn+1) + d(vj , vn+1)) (15)

Consider the two cases:

• v∗ /∈ {vi, vj}; when we walk around T ∗
n from vi1 , v

∗, vj1 , assume that we met
vj and vi in this order. Thus, using the triangle inequality we deduce:

d(T ∗
n) ≥ d(vi1 , v

∗) + d(v∗, vj1) + d(vj1 , vj) + d(vi, vi1 ) (16)

The inequality (15) holds using inequalities (14), (16), and the triangle in-
equality.

• v∗ ∈ {vi, vj}; assume v∗ = vi. In this case, we deduce d(T ∗
n) ≥ d(vi1 , vi) +

d(vi, vj1) + d(vj1 , vj) + d(vj , vi1) and the inequality (15) also holds.

On the other hand, using the triangle inequality we also get:

d(T1) ≥ d(T ∗
n) ≥ d(T ∗

n+1) − d(vi, vn+1) − d(vj , vn+1) (17)

Adding inequality (15) with coefficient 2 and inequality (17), the expected
result follows.

In order to show the tightness, consider (In+1, T
∗
n) where d(vn+1, vn) = n+1,

d(vn+1, vi) = n, ∀i = 1, · · · , n − 1, d(vn, vi) = 2n, ∀i = 1, · · · , n − 1, and



d(vi, vj) = 0, ∀i, j 1 ≤ i < j ≤ n − 1. The tour T ∗
n is given by the se-

quence (v1, v2, · · · , vn, v1). Longest Insertion on T ∗
n gives d(T1) = 4n+1 whereas

d(T ∗
n+1) = 6n. ⊓⊔

Complete proof of Theorem 4:

Proof. Let T ∗
n be an optimum solution on the initial instance In, T ∗

n+1 an opti-
mum solution on the final instance In+1, and T the solution obtained by applying
Best Insertion on T ∗

n .
Let K =

√
n and 1 ≤ k ≤ K.

Consider the following subsequence of nodes (ak, · · · , a1, vn+1, b1, · · · , bk) in
T ∗

n+1.
Let Jk be the sub-instance of In+1 induced by all the nodes but vn+1,

a1, a2, · · · , ak−1 and b1, b2, · · · , bk−1 (in particular J1 is (Kn, d), the initial in-
stance).

We have :

d(T ∗
n+1) ≤ d(vn+1, a1) + d(vn+1, b1) +

k−1
∑

i=1

d(ai, ai+1) +

k−1
∑

i=1

d(bi, bi+1) + opt(Jk)

where opt(Jk) is the value of an optimum solution on Jk. Indeed, there is an
hamiltonian path in T ∗

n+1 between ak and bk, the value of which is at most
opt(Jk).

Let dk
m(v) be the medium distance between a node v and the nodes in Jk,

i.e., dk
m(v) = 1

|Jk|
∑

vi∈Jk
d(v, vi). Using the triangle inequality, we get that for

any pair (u, v) of nodes (and for any k), d(u, v) ≤ dk
m(u) + dk

m(v). Hence we get
an upper bound on d(T ∗

n+1):

d(T ∗
n+1) ≤ 2

(

dk
m(n + 1) +

k−1
∑

i=1

dk
m(ai) +

k−1
∑

i=1

dk
m(bi)

)

+dk
m(ak)+dk

m(bk)+opt(Jk)

(18)
Now, our goal is to lower bound first d(T ∗

n) and then d(T ) in order to get the
following inequality :

d(T ) ≥
(

1 − O(k)

n

)

(d(T ∗
n+1) − dk

m(ak) − dk
m(bk)) (19)

To achieve this, first consider an optimum solution T ∗(Jk) (of value opt(Jk))
of Jk. Consider a particular node v1 in Jk, and let us call v2, · · · , v2k−1 the nodes
following v1 in T ∗(Jk) (given an arbitrary order). We insert the 2(k − 1) nodes
a1, a2, · · · , ak−1 and b1, b2, · · · , bk−1 in T ∗(Jk) in the following way:

v1, a1, v2, a2, ..., vk−1, ak−1, vk, b1, vk+1, ..., bk−1, v2k−1

Hence we get a tour on In. We apply this construction n − 2(k − 1) times,
considering for v1 all the nodes in Jk. Then we get n − 2(k − 1) tours on In.



However, for each node v of Jk and each ai, the edge (ai, v) appears twice (the
same holds for (bi, v)). Moreover, each edge of T ∗(Jk) is removed 2(k−1) times,
hence appears n−2(k−1)−2(k−1) times. This leads to the following inequality:

(n − 2(k − 1))d(T ∗
n) ≥ 2(n − 2(k − 1))

(

k−1
∑

i=1

dk
m(ai) +

k−1
∑

i=1

dk
m(bi)

)

+(n − 2(k − 1) − 2(k − 1))opt(Jk)

d(T ∗
n) ≥ 2

(

k−1
∑

i=1

dk
m(ai) +

k−1
∑

i=1

dk
m(bi)

)

+

(

1 − 2(k − 1)

n − 2(k − 1)

)

opt(Jk) (20)

Considering that k ≤ √
n:

d(T ∗
n) ≥ 2

(

k−1
∑

i=1

dk
m(ai) +

k−1
∑

i=1

dk
m(bi)

)

+

(

1 − O(k)

n

)

opt(Jk) (21)

Now, we relate d(T ) and d(T ∗
n). Consider each of the n possible insertions of

vn+1 in T ∗
n . Since each edge of (T ∗

n) is removed exactly once, we get:

nd(T ) ≥ nd(T ∗
n) + 2

n
∑

i=1

d(vn+1, vi) − d(T ∗
n)

However
∑n

i=1 d(vn+1, vi) ≥
∑

v∈Jk
d(vn+1, v) = (n − 2(k − 1))dk

m(n + 1).

d(T ) ≥
(

1 − 1

n

)

d(T ∗
n) + 2

(

1 − 2(k − 1)

n

)

dk
m(n + 1)

Using (21), we derive:

d(T ) ≥
(

1 − O(k)

n

)

(

2

(

dk
m(n + 1) +

k−1
∑

i=1

dk
m(ai) +

k−1
∑

i=1

dk
m(bi)

)

+

(

1 − O(k)

n

)

opt(Jk)

)

Using (18), the previous inequality gives equation (19).

This equation is valid for any k. Now, let us write this inequality for k =
1, · · · , K. Let us consider the two following cases :

1. If, for some k, dk
m(ak)+dk

m(bk) ≤ 1
K

d(T ∗
n+1), then we get d(T ) ≥

(

1 − O(k)
n

)

(

1 − 1
K

)

d(T ∗
n+1).

Hence:

d(T ) ≥
(

1 − O(K)

n

)(

1 − 1

K

)

d(T ∗
n+1)

Since K =
√

n, we get d(T ) ≥
(

1 − O
(

1√
n

))

d(T ∗
n+1).



2. In the other case, for any k, dk
m(ak) + dk

m(bk) ≥ 1
K

d(T ∗
n+1). We now show

that this is impossible. By making the sum, we get :

K
∑

k=1

dk
m(ak) + dk

m(bk) ≥ d(T ∗
n+1) (22)

The only remaining thing is to upper bound this sum. Let us use (21) with
k = 2 :

d(T ∗
n) = opt(J1) ≥ 2(d2

m(a1) + d2
m(b1)) +

(

1 − 2

n

)

opt(J2)

If we apply the same inequality for opt(J2), we get

d(T ∗
n+1) ≥ 2(d2

m(a1) + d2
m(b1)) + 2

(

1 − 2

n

)

(d3
m(a2) + d3

m(b2))

+

(

1 − 2

n

)(

1 − 2

n − 2

)

opt(J3)

Then, by recurrence:

d(T ∗
n+1) ≥ 2

(

1 − 2

n − 2K

)K
((

K
∑

k=1

dk+1
m (ak) + dk+1

m (bk)

)

+ opt(JK+1)

)

Now let us remark that :

(n − 2k)dk+1
m (ak) = (n − 2(k − 1))dk

m(ak) − d(ak, bk)

So, dk+1
m (ak) ≥ dk

m(ak) − d(ak,bk)
n−2k

, and hence:

K
∑

k=1

dk+1
m (ak) + dk+1

m (bk) ≥
(

K
∑

k=1

dk
m(ak) + dk

m(bk)

)

− 2
∑K

k=1 d(ak, bk)

n − 2K

But
∑K

k=1 d(ak, bk) is the value of a matching, hence
∑K

k=1 d(ak, bk) ≤
d(T ∗

n+1). Using 22, we get:

d(T ∗
n) ≥ 2

(

1 − O(K)

n

)

d(T ∗
n+1)

This is impossible for n large enough. ⊓⊔

Proof of Proposition 2



Proof. We only present the proof for Best Insertion. Consider an optimum solu-
tion T ∗

n+1 and let vi and vj be the neighbors of vn+1 in T ∗
n+1. Then

d(T ∗
n+1) ≤ d(T ∗

n) + d(vi, vn+1) + d(vj , vn+1)

Now, consider the insertion of vn+1 between vi and a neighbor vi′ in T ∗
n .

d(T ) ≥ d(T ∗
n) + d(vi, vn+1) + d(vi′ , vn+1) − d(vi, vi′)

Doing the same with a neighbor vj′ of vj , and making the sum leads to :

d(T ) ≥ d(T ∗
n) +

1

2
(d(vi, vn+1) + d(vj , vn+1) − d(vi, vi′ ) − d(vj , vj′ ))

To conclude, we just have to notice that d(vi, vi′) + d(vj , vj′) ≤ d(T ∗
n).

For the upper bound, consider the instance where all the distances in (Kn, d)
are 0, and consider an optimum solution (v1, v2, · · · , vn). We assume that n is
even. Then we set d(vi, vn+1) = 0 if i is even and 1 if i is odd. Then obviously
Best Insertion gives a solution of value 1, while the optimum solution has value 2.

⊓⊔

Proof of Proposition 5

Proof. To get the approximation result, let vi and vj the nodes adjacent to
vn+1 in T ∗

n+1. Consider now an optimum solution T ∗
n , and let vi′ and vi′′ the

two neighbors of vi and vj′ and vj′′ the two neighbors of vj in T ∗
n . T ∗

n is
(vi, vi′ , · · · , vj′ , vj , vj′′ , · · · , vi′′ ) (with possibly i′ = j′ or i′′ = j′′). Note that
if vi′ or vi′′ is vj , or if vj′ or vj′′ is vi, then deletion is optimum. Let P ′ be
the sequence of nodes between vi′ and vj′ (eventually empty) and P ′′ the one
between vi′′ and vj′′ .

Consider the following solutions on G: T1 = (vn+1, vi, vi′ , P
′, vj′ , vi′′ , P

′′, vj′′ , vj),
and the symmetrical T2 = (vn+1, vi, vi′′ , P

′′, vj′′ , vi′ , P
′, vj′ , vj).

We get :

2d(T ∗
n+1) ≥ 2d(vn+1,vi

)+2d(vn+1,vj
)+2d(T ∗

n)−d(vi, vi′)−d(vi, vi′′)−d(vj , vj′)−d(vj , vj′′ )

With deletion we get a solution T such that d(T ) ≥ d(T ∗
n+1) − d(vn+1,vi

) −
d(vn+1,vj

). Taking into account that d(vi, vi′ )+d(vi, vi′′)+d(vj , vj′ )+d(vj , vj′′ ) ≤
d(T ∗

n), we get 2d(T ) ≥ d(T ∗
n).

For the tightness of the bound, consider a graph on n + 1 nodes where
d(vi, vj) = M is i ≤ 2 and j ≥ 3 (or vice versa) and d(vi, vj) = 1 other-
wise. Then an optimum solution is (v1, vn+1, v2, vn, vn−1, · · · , v3, v1), with value
4M + n− 3. When we delete node vn+1, we get a solution of value 2M + n− 2.
However, the value of an optimum solution on the final instance is 4M + n− 4.
The ratio can be arbitrary close to 1/2. ⊓⊔


