Persistence of integrated stable processes
Résumé
We compute the persistence exponent of the integral of a stable Lévy process in terms of its self-similarity and positivity parameters. This solves a problem raised by Z. Shi (2003). Along the way, we investigate the law of the stable process L evaluated at the first time its integral X hits zero, when the bivariate process (X,L) starts from a coordinate axis. This extends classical formulae by McKean (1963) and Gor'kov (1975) for integrated Brownian motion.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...