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PERSISTENCE OF INTEGRATED STABLE PROCESSES

CHRISTOPHE PROFETA AND THOMAS SIMON

Abstract. We compute the persistence exponent of the integral of a stable Lévy process
in terms of its self-similarity and positivity parameters. This solves a problem raised by Z.
Shi (2003). Along the way, we investigate the law of the stable process L evaluated at the
first time its integral X hits zero, when the bivariate process (X,L) starts from a coordinate
axis. This extends classical formulæ by McKean (1963) and Gor’kov (1975) for integrated
Brownian motion.

1. Introduction and statement of the results

Let X = {Xt, t ≥ 0} be a real process starting at zero and Tx = inf{t > 0, Xt > x} be
its first-passage time above a positive level x. Studying the law of Tx is a classical problem
in probability theory. In general, it is difficult to obtain an explicit expression of this law.
However, it has been observed that in many interesting cases the survival function has a
polynomial decay:

P[Tx > t] = t−θ+o(1), t→ +∞, (1.1)

where θ is a positive constant which is called the persistence exponent, and usually does not
depend on x. The computation of persistence exponents has many connections to various
problems in probability and mathematical physics, and we refer to the recent surveys [2, 3]
for more information on this topic. In this paper we consider this problem for the process

Xt =

∫ t

0

Ls ds,

where L = {Lt, t ≥ 0} is a strictly α−stable Lévy process starting from zero, with law P.
Our process L is normalized to have characteristic exponent

Ψ(λ) = log(E[eiλL1 ]) = −(iλ)αe−iπαρ sgn(λ), λ ∈ R, (1.2)

where α ∈ (0, 2] is the self-similarity parameter and ρ = P[L1 ≥ 0] is the positivity parameter.
We refer to [14, 21] for classic accounts on stable laws and processes. The strict stability
implies the (1/α)−self-similarity of L and the (1+1/α)−self-similarity of X , in other words
that

{Lkt, t ≥ 0} d
= {k1/αLt, t ≥ 0} and {Xkt, t ≥ 0} d

= {k1+1/αXt, t ≥ 0}
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for all k > 0. When α = 2, one has ρ = 1/2 and Ψ(λ) = −λ2, so that L =
√
2B is a rescaled

Brownian motion. When α = 1, one has ρ ∈ (0, 1) and L is a Cauchy process with a linear
drift. When α ∈ (0, 1) ∪ (1, 2) the characteristic exponent takes the more familiar form

Ψ(λ) = −κα,ρ|λ|α(1− iβ tan(πα/2) sgn(λ)),

where β ∈ [−1, 1] is an asymmetry parameter, whose connection with the positivity param-
eter is given by Zolotarev’s formula:

ρ =
1

2
+

1

πα
arctan(β tan(πα/2)),

and κα,ρ = cos(πα(ρ − 1/2)) > 0 is a scaling constant. The latter could have taken any
positive value, changing the normalization (1.2) accordingly, without incidence on our pur-
poses below. One has ρ ∈ [0, 1] if α < 1 and ρ ∈ [1 − 1/α, 1/α] if α > 1. When α > 1 and
ρ = 1/α the process L has no positive jumps, whereas it has no negative jumps when α > 1
and ρ = 1− 1/α. When α < 1 and ρ = 0 or ρ = 1, the process |L| is a stable subordinator
and has increasing sample paths, a situation which will be implicitly excluded throughout
this paper. In this case, the process X is indeed also monotonous and the survival function
in (1.1) either is one or decays towards zero at an exponential speed - see [2] p.4 for details.

When α = 2, the bivariate process (X,L) is Gaussian with explicit covariance function and
transition density, providing also the basic example of a degenerate diffusion process - see
[10] for details and references. When α < 2, the process (X,L) is Non-Gaussian α−stable in
the broad sense of [14]. The process (X,L) is a strong Markov process, which is sometimes
called the Kolmogorov process in the literature. In the following we will set P(x,y) for the
law of (X,L) starting at (x, y) ∈ R

2. Our main concern in this paper is the hitting time of
zero for X :

T0 = inf{t > 0, Xt = 0}.
Since |L| is not a subordinator, a simple argument using self-similarity and the zero-one law
for Markov processes - see below Lemma 6 for details - shows that P(0,0)[T0 = 0] = 1, in
other words that the origin is regular for the vertical axis. If x < 0 or x = 0 and y < 0,
the continuity of the sample paths of X show that a.s. T0 = inf{t > 0, Xt > 0}, and it will
be checked in Lemma 6 below that T0 is also a.s. finite. If x > 0 or x = 0 and y > 0, the
law of T0 is obviously deduced from that of the latter situation in considering the dual Lévy
process −L.

When (x, y) 6= (0, 0), the difficulty to obtain concrete informations on the law of T0 under
P(x,y) comes from the fact that X itself is not a Markov process. In the Brownian case for
example, the density function of T0 is expressed through quite intricate integral formulæ -
see [2] pp.15-16 and the references therein. On the other hand, some universal estimates
can be obtained for the behaviour of the distribution function P(x,y)[T0 ≤ t] as t → 0, using
self-similarity and Gaussian or stable upper tails for the supremum process - see e.g. Section
10.4 in [14]. But it is well-known that the study of P(x,y)[T0 > t] as t → +∞ is a harder
problem, where a more exotic behaviour is expected.
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Throughout the paper, for any real functions f and g we will use the standard notation
f(t) ≍ g(t) as t → +∞ to express the fact that there exist κ1, κ2 positive finite constants
such that κ1f(t) ≤ g(t) ≤ κ2f(t) as t→ +∞. Our main result is the following.

Theorem A. Assume x < 0 or x = 0, y < 0. One has

P(x,y)[T0 > t] ≍ t−θ, t→ +∞,

with θ = ρ/(1 + α(1− ρ)).

In the Brownian case α = 2, one has θ = 1/4 = ρ/2 and this estimate has been known since
the works of M. Goldman - see Proposition 2 in [6], with a more precise formulation on the
density function of T0, following the seminal article of McKean [12]. The universality of the
persistence exponent 1/4 for integrals of real Lévy processes having exponential moments on
both sides has been shown in [1], with the help of strong approximation arguments. Recently,
it was proved in [4] that all integrated real random walks with finite variance have also 1/4 as
persistence exponent, extending [20] for the particular case of the integrated simple random
walk. Let us also mention that the survival function of the nth hitting time of zero for
the integrated Brownian motion exhibits the same power decay up to a logarithmic term in
ct−1/4(ln(t))n−1 with an explicit constant c, as shown by the first author in [13].

In the case 1 < α < 2 and with no negative jumps, that is ρ = 1 − 1/α, one obtains
θ = (α− 1)/2α = ρ/2, an estimate which had been proved by the second author in [18] with
different techniques and a less precise formulation than Theorem A for the lower bound,
involving a logarithmic correction term. It is worth mentioning that the same persistence
exponent (α− 1)/2α appears for the integrals of random walks attracted towards this spec-
trally positive Lévy process - see Remark 1.2 in [4].

It has been conjectured in [2] - see Conjecture 4 therein - that the persistence exponent
should be ρ/2 in general. This expected value should be compared with a classical result
of Bingham stating that the persistence exponent is ρ for the stable process L - see (2.16)
in [2] and the references of Section 2.2 therein. The admissible set of (α, ρ) and Theorem
A entail that θ > ρ/2 as soon as L has negative jumps, hence providing a negative answer
to this conjecture. The fact that θ is an increasing function of the positivity parameter ρ
matches the intuition, however it is harder to explain heuristically why it is also a decreasing
function of α.

Specifying x = −1 and y = 0 in Theorem A entails by self-similarity the following lower
tail probability estimate

P[X∗
1 ≤ ε] ≍ ε

θα
α+1 , ε→ 0,

with the notation X∗
1 = sup{Xt, t ≤ 1}. Some heuristics on the subordination of X by the

inverse local time of L when α > 1 had led to the conjecture, formulated in Part 2 of [16],

that in the symmetric case ρ = 1/2 one should have P[X∗
1 ≤ ε] = ε(α−1)+/2(α+1)+o(1) as ε→ 0.

The invalidity of this conjecture as soon as α is close enough to 1 had been observed in [19].
Theorem A shows that Shi’s exponent is the right one only for integrated Brownian motion:
in the symmetric case one has θα/(α + 1) = α/(α + 1)(α + 2) ≥ (α − 1)+/2(α + 1), with
an equality only if α = 2. Let us mention in passing that lower tail probabilities offer some
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challenging problems for Gaussian processes - see [11, 15].

Our method to prove Theorem A hinges upon the random variable LT0 , the so-called hitting
place of (X,L) on the vertical axis, which has been extensively studied in the Brownian case
- see [12, 6, 9, 10]. Notice that this random variable is positive under P(x,y) if x < 0 or x = 0
and y < 0. The reason why it is connected to the persistence exponent comes from the
following heuristical equivalence for fractional moments

E(x,y)[T
s
0 ] < +∞ ⇔ E(x,y)[L

αs
T0
] < +∞

for all s > 0, which had been conjectured in [18] p.176, and turns out to be true as a
consequence of Theorem A and Lemma 11 below. The precise relationship between the
upper tails of T0 and that of LT0 follows from a series of probabilistic estimates which are
the matter of Section 4.

In this paper we also provide a rather complete description of the law of the random
variable LT0 when (X,L) starts from a coordinate axis. To express our second main result,
we need some further notation. For every µ ∈ (0, 1), introduce the µ−Cauchy random
variable Cµ, with density

sin(πµ)

πµ(x2 + 2 cos(πµ)x+ 1)
1{x≥0}.

Our above denomination comes from the case µ = 1/2, where C1/2 is the half-Cauchy
distribution. If X is a positive random variable and ν ∈ R is such that E[Xν ] < ∞, the
positive random variable X(ν) defined by

E[f(X(ν))] =
E[Xνf(X)]

E[Xν ]

for all f : R+ → R bounded continuous, is known as the size bias of order ν of X. Observe
that when X is absolutely continuous, the density of X(ν) is obtained in multiplying that of
X by xν and renormalizing. Introduce finally the parameters

γ =
ρα

1 + α
and χ =

ρα

1 + α(1− ρ)
= αθ.

Notice that from the admissible set for (α, ρ), we have γ ∈ (0, 1/2) and χ ∈ (0, 1).

Theorem B. (i) For every y < 0, under P(0,y) one has

LT0

d
= |y|(C1−γ

χ )(1).

(ii) For every x < 0, under P(x,0) the positive random variable LT0 has Mellin transform

E(x,0)[L
s−1
T0

] =
(1 + α)

1−s
1+αΓ(α+2

α+1
)Γ( 1−s

α+1
) sin(πγ)

Γ( s
α+1

)Γ(1− s) sin(πs(1− γ))
|x| s−1

α+1 , |s| < 1/(1− γ).

The proof of this result is given in Section 3, following some preliminary computations in-
volving oscillating integrals and the Fourier transform ofXt, performed in Section 2. Observe
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that the density in (i) above is explicit and reads for example

3

2π

|y|1/2z3/2
|y|3 + z3

1{z≥0}

in the Brownian case, a formula originally proved by McKean in [12] - see also formulæ (1)
and (2) in [9]. As is well-known, the Cauchy random variable appears in exit or winding
problems for two-dimensional Brownian motion. The fact that it is also connected with
similar problems for general integrated stable processes is perhaps more surprising.

An interesting consequence of (ii) is that the Mellin transform can be inverted in the
Cauchy case α = 1 and exhibits the same type of law as in (i): one obtains

LT0

d
=
√

2|x| (C1−γ
δ )(1)

with the notation δ = (1+ χ)/2. The Mellin transform of (ii) can also be simply inverted in
the Brownian case in terms of Beta and Gamma random variables, shedding some new light
on a formula by Gor’kov [7] which was of the analytical type, and in the case α < 1 in terms
of positive stable random variables. The Mellin inversion is however more complicated when
α ∈ (1, 2), and involves no classical random variables in general - see Section 3.3 below for
details.

2. Preliminary computations

The following lemma, which we could not locate in the literature, will be useful in the
sequel.

Lemma 1. Let ν ∈ (0, 1) and X be a real random variable such that E[|X|−ν ] < ∞. One

has
∫ ∞

0

λν−1
E[cos(λX)] dλ = Γ(ν) cos(πν/2)E[|X|−ν]

and
∫ ∞

0

λν−1
E[sin(λX)] dλ = Γ(ν) sin(πν/2)E[|X|−νsgn(X)].

Proof. The generalized Fresnel integral which is computed e.g. in formula (37) p.13 of [5]
shows that for all u 6= 0, ν ∈ (0, 1), one has

∫ ∞

0

λν−1 cos(λu) dλ = Γ(ν) cos(πν/2) |u|−ν. (2.1)

The first statement of the lemma is hence simply a switching of the expectation and the
integral. However, we cannot apply Fubini’s theorem directly. Set µ for the probability
distribution of X. From (2.1) and an integration by parts, we get

Γ(ν) cos(πν/2)E[|X|−ν] =

∫

R

µ(du)

(
∫ ∞

0

λν−1 cos(λu) dλ

)

= (1− ν)

∫

R

µ(du)

(
∫ ∞

0

sin(λu)

u
λν−2 dλ

)

.
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Since
∫

R

µ(du)

(
∫ ∞

0

∣

∣

∣

∣

sin(λu)

u

∣

∣

∣

∣

λν−2 dλ

)

≤
∫

R

µ(du)

(
∫ ∞

0

(

λ ∧ 1

|u|

)

λν−2 dλ

)

≤ E[|X|−ν ]

ν(1− ν)
< +∞,

we may now apply Fubini’s theorem and obtain

Γ(ν) cos(πν/2)E[|X|−ν ] = (1− ν)

∫ ∞

0

λν−2 dλ

(
∫

R

sin(λu)

u
µ(du)

)

.

The dominated convergence theorem entails that the function

ψ(λ) =

∫

R

sin(λu)

u
µ(du)

is differentiable, with derivative

ψ′(λ) =

∫

R

cos(λu)µ(du) = E[cos(λX)].

Thus, another integration by parts yields

Γ(ν) cos(πν/2)E[|X|−ν] =

∫ ∞

0

λν−1
E[cos(λX)] dλ −

[

λν−1ψ(λ)

]+∞

0

and it remains to prove that the bracket is zero. On the one hand, one has

λν−1|ψ(λ)| ≤ λν → 0 as λ→ 0.

On the other hand, using

λν−1

∣

∣

∣

∣

sin(λu)

u

∣

∣

∣

∣

≤ λν−1 | sin(λu)|1−ν

|u| ≤ |u|−ν,

and the dominated convergence theorem, we see that λν−1|ψ(λ)| → 0 as λ → +∞. This
completes the proof of the first statement of the lemma. The second statement may be
handled similarly with the help of the formula

∫ ∞

0

λν−1 sin(λx) dλ = Γ(ν) sin(πν/2)sgn(x)|x|−ν , |ν| < 1, (2.2)

which is given e.g. in (38) p.13 in [5].
�

Lemma 2. For all x, y ∈ R and t ≥ 0 one has

log(E(x,y)[e
iλXt ]) = iλ(x+ yt) − tα+1

α+ 1
(iλ)αe−iπαρ sgn(λ), λ ∈ R.

Proof. It is clearly enough to consider the case x = y = 0. Integrating by parts yields the
following representation of Xt as a stable integral:

Xt =

∫ ∞

0

(t− s)+ dLs =

∫ ∞

0

(t− x)+M(dx),
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whereM is an α−stable random measure on R
+ with Lebesgue control measure and constant

skewness intensity β(x) = β - see Example 3.3.3 in [14]. In the case α 6= 1, the statement
of the lemma is a direct consequence of Proposition 3.4.1 (i) in [14], reformulated with the
(α, ρ) parametrization. In the case α = 1, ρ = 1/2 we use Proposition 3.4.1 (ii) in [14] (with
β = 0). The case α = 1, ρ 6= 1/2 follows from the symmetric case in adding a drift coefficient
µt for some µ 6= 0, which integrates in µt2/2.

�

We now set

sα,ρ =
sin(πα(ρ− 1/2))

α + 1
∈ (−1, 1) and cα,ρ =

cos(πα(ρ− 1/2))

α + 1
∈ (0, 1).

The proposition gives a representation for the Mellin transform of X+
t = Xt1{Xt>0}.

Proposition 3. For all x, y ∈ R, t > 0 and ν ∈ (0, 1) one has

E(x,y)[(X
+
t )

−ν ] =
Γ(1− ν)

π

∫ ∞

0

λν−1e−cα,ρλαtα+1

sin(λ(x+ yt) + sα,ρλ
αtα+1 + πν/2) dλ.

Proof. Since Xt is a stable random variable, it has a bounded density and E(x,y)[(X
+
t )

−ν ] is
hence finite for all ν ∈ (0, 1). By Lemma 2 we have

log(E(x,y)

[

eiλXt
]

) = iλ(x+ yt)− λαt1+α(cα,ρ − isα,ρ), λ ≥ 0.

Taking the real part and integrating with respect to λν−1 on ]0,+∞[, we deduce
∫ ∞

0

λν−1e−cα,ρλαt1+α

cos(λ(x+ yt) + sα,ρλ
αt1+α) dλ =

∫ ∞

0

λν−1
E(x,y) [cos(λXt)] dλ

= Γ(ν) cos
(πν

2

)

E(x,y)

[

|Xt|−ν
]

,

where the second equality comes from Lemma 1. Similarly, taking the imaginary part entails
∫ ∞

0

λν−1e−cα,ρλαt1+α

sin(λ(x+ yt) + sα,ρλ
αt1+α) dλ = Γ(ν) sin

(πν

2

)

E(x,y)

[

|Xt|−νsgn(Xt)
]

.

Multiplying the first relation by sin(πν/2), the second by cos(πν/2), and summing, we finally
obtain

Γ(ν) sin(πν)E(x,y)[(X
+
t )

−ν ] =

∫ ∞

0

λν−1e−cα,ρλαtα+1

sin(λ(x+ yt) + sα,ρλ
αtα+1 + πν/2) dλ,

which yields the required expression by the complement formula for the Gamma function.
�

Our last proposition provides some crucial computations for the proof of Theorem B.

Proposition 4. Set ν ∈ (α/(α+ 1), 1) and s = (1− ν)(α + 1) ∈ (0, 1).

(i) For every y > 0, one has
∫ ∞

0

E(0,y)[(X
+
t )

−ν ] dt = (α + 1)1−νΓ(1− s) sin(πs(1− γ))
Γ(1− ν)2

π
ys−1·
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(ii) For every y < 0, one has
∫ ∞

0

E(0,y)[(X
+
t )

−ν ] dt = (α+ 1)1−νΓ(1− s) sin(πγs)
Γ(1− ν)2

π
|y|s−1·

(iii) For every x < 0, one has
∫ ∞

0

E(x,0)[(X
+
t )

−ν ] dt = (α+ 1)−
α

α+1 Γ

(

1− s

α+ 1

)

sin(πγ)Γ

(

1

α+ 1

)

Γ(1− ν)

π
|x| s−1

α+1 .

Proof. Suppose first x = 0 and y ∈ R. Integrating the expression on the right-hand side of
Proposition 3 yields a double integral of the form

Iν =

∫ ∞

0

(
∫ ∞

0

λν−1e−cα,ρλαt1+α

sin(λyt+ sα,ρλ
αt1+α + νπ/2) dλ

)

dt

=

∫ ∞

0

(
∫ ∞

0

rν−1e−cα,ρrα sin(ryt−1/α + sα,ρr
α + νπ/2) dr

)

t−ν(1+1/α) dt

=

∫ ∞

0

(
∫ ∞

0

rν−1e−cα,ρrα sin(ryu+ sα,ρr
α + νπ/2) dr

)

αu−s du

=

∫ ∞

0

(
∫ ∞

0

αu−s sin(ryu+ sα,ρr
α + νπ/2) du

)

rν−1e−cα,ρrα dr,

where the first, resp. second, equality comes from the change of variable λt1+1/α = r, resp.
u = t−1/α, and the switching of the integrals in the third equality is made exactly as in
Lemma 1, using the fact that s ∈ (0, 1) and s+ ν > 1.

Suppose first y > 0. We start by computing the integral in u with the help of formulæ
(2.1) and (2.2) and some trigonometry:

α

∫ ∞

0

u−s sin(ryu+ sα,ρr
α + νπ/2) du = αΓ(1− s) cos((s− ν)π/2− sα,ρr

α)(yr)s−1.

We then compute the integral in r with the change of variable z = rα, using the notation
Z = eiπα(ρ−1/2):

Iν = αΓ(1− s) ys−1

∫ ∞

0

rα(1−ν)−1e−cα,ρrα cos((s− ν)π/2− sα,ρr
α) dr

= Γ(1− s) ys−1

∫ ∞

0

z−νe−cα,ρz cos((s− ν)π/2− sα,ρz) dz

= (1 + α)1−νΓ(1− s)Γ(1− ν)ℜ(eiπ(s−ν)/2Zν−1) ys−1

= (1 + α)1−νΓ(1− s)Γ(1− ν) sin(πs(1− γ)) ys−1,

where the third line follows after some algebraic simplifications. By Proposition 3, this com-
pletes the proof of (i).

Suppose now y < 0. An analogous computation to the above shows that

Iν = α

∫ ∞

0

u−s sin(ryu+ sα,ρr
α+ νπ/2) du = αΓ(1− s) sin((s+ ν−1)π/2+ sα,ρr

α)|yr|s−1.
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The integral in r is then computed in the same way and yields the formula

Iν = (1 + α)1−νΓ(1− s)Γ(1− ν)ℑ(eiπ(s+ν−1)/2Z̄ν−1) |y|s−1

= (1 + α)1−νΓ(1− s)Γ(1− ν) sin(πγs) |y|s−1,

which completes the proof of (ii) by Proposition 3.

We last suppose x < 0 and y = 0. We again integrate the expression on the right-hand
side of Proposition 3, making the changes of variable λt1+1/α = r and u = t−(1+1/α). This
yields a double integral of the form

α

α + 1

∫ ∞

0

(
∫ ∞

0

rν−1e−cα,ρrα sin(rxu+ sα,ρr
α + νπ/2) dr

)

u−(s+α)/(1+α) du,

where we can switch the orders of integration as in Lemma 1 because (s+α)/(1+α) ∈ (0, 1)
and (s+ α)/(1 + α) + ν > 1. We then compute the integral in u similarly as above and find

α

α + 1
Γ

(

1− s

α + 1

)

sin(πα/2(α+ 1) + sα,ρr
α) |xr| s−1

α+1 .

We finally compute the integral in r with the change of variable r = z1/α, and get after some
algebraic manipulations

Iν = (α + 1)−
α

α+1 sin(πγ)Γ

(

1

α + 1

)

Γ

(

1− s

α + 1

)

|x| s−1
α+1 ,

which completes the proof of (iii) by Proposition 3.
�

Remark 5. It seems hard to find an explicit formula in general for
∫ ∞

0

E(x,y)[(X
+
t )

−ν ] dt

when (x, y) is not on a coordinate axis. In the symmetric Cauchy case, some further com-
putations show that the integral equals

1

sin(πν)
ℑ
(
∫ ∞

0

(−(x+ yt+ it2/2))−ν dt

)

.

This can be rewritten with the hypergeometric function, apparently not in a tractable manner
when xy 6= 0.

3. Proof of Theorem B

The following lemma shows the aforementioned and intuitively obvious fact that T0 is a
proper random variable for any starting point.

Lemma 6. For all x, y ∈ R one has P(x,y)[T0 < +∞] = 1.



10 CHRISTOPHE PROFETA AND THOMAS SIMON

Proof. Suppose first x = −1 and y = 0. Then

P(−1,0)[T0 = +∞] = P(0,0)[X
∗
∞ < 1] = P(0,0)[X

∗
∞ = 0] ≤ P(0,0)[X1 ≤ 0] < 1,

where the second equality comes from the self-similarity of X and the strict inequality from
the fact that X1 is a two-sided stable random variable - see Lemma 2. On the other hand,
setting T = inf{t > 0, Xt > 0}, it is clear by self-similarity that under the probability
measure P(0,0) one has

T
d
= kT

for all k > 0. In particular, P(0,0)[T ∈ {0,+∞}] = 1. Moreover, the zero-one law for the
Markov process (X,L) entails that P(0,0)[T = 0] is 0 or 1. Since P(0,0)[T = +∞] = P(0,0)[X

∗
∞ =

0] < 1, we get P(0,0)[T = +∞] = 0 whence P(−1,0)[T0 = +∞] = 0 as desired. Notice that it
also entails P(0,0)[T = 0] = 1, as mentioned in the introduction.

Using again self-similarity, this entails P(x,0)[T0 < +∞] = 1 for all x ≤ 0, and also for all
x ≥ 0 in considering the dual process −L. The fact that P(x,y)[T0 < +∞] = 1 for all x, y
such that xy < 0 follows then by a comparison of the sample paths.

Suppose now that x ≤ 0, y < 0. Introduce the stopping time S = inf{t > 0, Lt > 0},
which is finite a.s. under P(x,y) because |L| is not a subordinator. It is clear that LS ≥ 0 and
XS < 0 a.s. Applying the strong Markov property, we see from the above cases that

P(x,y)[T0 = +∞] ≤ P(x,y)[P(XS ,LS)[T0 = +∞]] = 0.

The same argument holds for x ≥ 0, y > 0.
�

Assume now x < 0 or x = 0 and y < 0. It is clear that at T0 the process X has a non-
negative speed, which entails by right-continuity that LT0 ≥ 0 a.s. Applying the Markov
property at T0 entails

P(x,y)[Xt ∈ du] =

∫ ∞

0

∫ t

0

P(0,z)[Xt−s ∈ du]P(x,y)[T0 ∈ ds, LT0 ∈ dz] (3.1)

for all t, u > 0. Integrating in time yields then after a change of variable and Fubini’s theorem

∫ ∞

0

P(x,y)[Xt ∈ du] dt =

∫ ∞

0

(
∫ ∞

0

P(0,z)[Xt ∈ du] dt

)

P(x,y)[LT0 ∈ dz]

for all u > 0. Integrating in space along u−ν and applying again Fubini’s theorem shows
finally the general formula

∫ ∞

0

E(x,y)[(X
+
t )

−ν ]dt =

∫ ∞

0

P(x,y)[LT0 ∈ dz]

(
∫ ∞

0

E(0,z)[(X
+
t )

−ν ]dt

)

(3.2)

which is valid for all ν ∈ R, with possibly infinite values on both sides.
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3.1. Proof of (i). Assume x = 0 and y < 0. Setting ν ∈ (α/(α + 1), 1), a straightforward
application of Proposition 4 (i) and (ii) is that both sides of (3.2) are finite, which leads to

E(0,y)[L
s−1
T0

] = |y|s−1

(

sin(πγs)

sin(π(1− γ)s)

)

for all s ∈ (0, 1). The formula extends then to {|s| < 1/(1 − γ)} by analytic continuation.
On the other hand, for all µ ∈ (0, 1) and s ∈ (−1, 1), the formula

∫ ∞

0

sin(πµ)xs

πµ(x2 + 2 cos(πµ)x+ 1)
dx =

sin(πµs)

µ sin(πs)

is a simple and well-known consequence of the residue theorem. Recalling that

χ =
γ

1− γ
∈ (0, 1)

and the definition of Cµ, we deduce

E(0,y)[L
s−1
T0

] = |y|s−1
E[C(1−γ)s

χ ]

for all |s| < 1/(1− γ), which concludes the proof of (i) by Mellin inversion.
�

3.2. Proof of (ii). Assume x < 0 and y = 0. Another application of (3.2) combined with
Proposition 4 (i) and (iii) shows that

E(x,0)[L
s−1
T0

] =
(1 + α)

1−s
1+αΓ(α+2

α+1
)Γ( 1−s

α+1
) sin(πγ)

Γ( s
α+1

)Γ(1− s) sin(πs(1− γ))
|x| s−1

α+1 (3.3)

for all s ∈ (0, 1). A simple analysis on the Gamma factors shows that the above expression
remains finite for all |s| < 1/(1− γ).

�

3.3. Some further Mellin inversions. In this paragraph we would like to invert (3.3) for
certain values of the parametrization (α, ρ).Without loss of generality we set x = −1, y = 0.
Applying the complement formula for the Gamma function, we first deduce from (3.3)

E(−1,0)[L
s−1
T0

] = (1 + α)
1−s
1+α

Γ(α+2
α+1

)Γ( 1−s
α+1

)Γ(s(1− γ))Γ(1− s(1− γ))

Γ( s
α+1

)Γ(1− s)Γ(γ)Γ(1− γ)
(3.4)

for |s| < 1/(1− γ).

3.3.1. The Cauchy case. We have α = 1 and ρ ∈ (0, 1), whence γ = ρ/2 ∈ (0, 1/2). As
mentioned in the introduction, set

δ =
1

2(1− γ)
=

1 + χ

2
∈ (1/2, 1).

Applying the Legendre-Gauss multiplication formula transforms (3.4) into

E(−1,0)[L
s−1
T0

] = 2
s−1
2 × sin(πγ) sin(πs/2)

sin(πs(1− γ))
·
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As above, this entails that under P(x,0) one has

LT0

d
=
√

2|x| (C1−γ
δ )(1),

which provides an striking similarity with the law of LT0 under P(0,y) for y < 0. Notice that
these two laws are however never the same, because δ 6= χ.

3.3.2. The Brownian case. We have α = 2, ρ = χ = 1/2 and γ = 1/3. Applying three times
the Legendre-Gauss multiplication formula and simplifying the quotients shows

E(−1,0)[L
s−1
T0

] = 9
s−1
3 × Γ(1/2 + s/3)

Γ(5/6)
× Γ(1/2− s/3)Γ(1/3)

Γ(2/3− s/3)Γ(1/6)

for all s ∈ (0, 1). Inverting the Mellin transform, this entails that under P(x,0) one has

LT0

d
= |9x|1/3

(

Γ5/6

B1/6,1/6

)1/3

,

where Γc resp. Ba,b stands for the standard Gamma resp. Beta random variable, and the
quotient is assumed independent. Gor’kov [7] provides an expression of the density of LT0

under P(x,y) in terms of the confluent hypergeometric function - see also formula (3) in [9]. It
seems however that the above simple identity in law has passed unnoticed in the literature
on integrated Brownian motion.

Remark 7. It is well-known that log(Γc) and log(Ba,b) are infinitely divisible random vari-
ables, and this property is hence also shared by log(LT0) under P(x,0). The question whether
LT0 itself is infinitely divisible is an interesting open problem for Brownian motion.

3.3.3. The case α < 1. We have ρ ∈ (0, 1), γ ∈ (0, 1/2) and χ ∈ (0, 1). Set

η =
1

(α+ 1)(1− γ)
=

1

1 + α(1− ρ)
∈ (1/2, 1) and σ =

α + 1

2
∈ (1/2, 1).

To express our result, we need some further notation. For every µ ∈ (0, 1) set Zµ for the
standard positive µ−stable random variable [21], which is characterized through its Mellin
transformation by

E[Zs
µ] =

Γ(1− s
µ
)

Γ(1− s)
, s < µ.

Applying again the Legendre-Gauss formula entails

E(−1,0)[L
s−1
T0

] = κ

(

2

(1 + α)
1

1+α

)s−1

× Γ(1 + s(1− γ))

Γ(1 + s
α+1

)
× Γ(1− s(1− γ))

Γ(1− s
2
)

×
Γ(1 + 1−s

α+1
)

Γ(1 + 1−s
2
)

= κ

(

2

(1 + α)
1

1+α

)s−1

E[Z
− s

α+1
η ] × E[Z

s
2
δ ] × E[Z

s−1
2

σ ]
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for all s ∈ (0, 1), where κ is the normalizing constant. Identifying, this shows that under
P(x,0) one has

LT0

d
= 2

∣

∣

∣

∣

x

α + 1

∣

∣

∣

∣

1
α+1

Z
1
2
σ ×

(

Z
1
2
δ

Z
1

α+1
η

)(1)

,

where the product and the quotient are assumed independent.

Remark 8. The above argument shows that the function

Mα(s) =
Γ( 1

α+1
+ s−1

α+1
)Γ(1 + s−1

α+1
)

Γ( 1
α+1

)Γ(1 + (s− 1))

is the Mellin transform of a positive random variable for all α ≤ 1. This is equivalent to
the fact that the independent product Xu = Γu

u × Γu
1 is an exponential mixture for all

u = 1/(α + 1) ∈ [1/2, 1). It is easy to see that Xu is also an exponential mixture for all
u ≥ 1. However, this property is not true in general for u < 1/2. Taking u = 1/3 viz. α = 2,
we see indeed from the Legendre-Gauss multiplication formula that

M2(s) =

(

4

27

)
s−1
3 Γ(2

3
)

Γ(2
3
+ s−1

3
)

is log-concave and hence not the Mellin transform of a positive measure.

3.3.4. The case 1 < α < 2. We first separate (3.4) into

E(−1,0)[L
s−1
T0

] = (1 + α)
1−s
1+α ×

Γ( 1
α+1

)Γ(s(1− γ))

Γ(1− γ)Γ( s
α+1

)
×

( 1
α+1

)Γ( 1−s
α+1

)Γ(1− s(1− γ))

Γ(γ)Γ(1− s)

= (1 + α)
1−s
1+α × E

[

Z
−s/(α+1)
1/(1+α(1−ρ))

]

×
( 1
α+1

)Γ( 1−s
α+1

)Γ(1− s(1− γ))

Γ(γ)Γ(1− s)
·

We next make the following assumption

γ ≤ 1/3.

Notice that this assumption is fulfilled in the spectrally negative case, where ρ = 1−1/α viz.
γ = (α − 1)/(α + 1) < 1/3. Setting Mα,γ(s) for the second multiplicand on the right-hand
side, we use again the Legendre-Gauss multiplication formula to get the transformation

Mα,γ(s) = κ 3s
Γ( 1−s

α+1
)

Γ(1−s
3
)
× Γ(1

2
− s

3
)

Γ(2
3
− s

3
)
× Γ(1− s(1− γ))

Γ(1
2
− s

3
)Γ(1− s

3
)

= κ̃
(

3.2−2/3
)s

E

[

Z
s−1
3

α+1
3

]

× E

[

B
1−s
3

1/6,1/6

]

× Γ(1− s(1− γ))

Γ(1− 2s
3
)

= κ̃
(

3.2−2/3
)s

E

[

Z
s−1
3

α+1
3

]

× E

[

B
1−s
3

1/6,1/6

]

× E

[

Z
2s/3
2/3(1−γ)

]
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where κ, κ̃ are normalizing constants. This leads to the identity in law

LT0

d
= 3.2−2/3

∣

∣

∣

∣

x

α + 1

∣

∣

∣

∣

1
α+1

×
(

Zα+1
3

B1/6,1/6

)
1
3

×
(

Z
2/3
2/3(1−γ)

Z
1/(α+1)
1/(1+α(1−ρ))

)(1)

,

an extension of the Brownian case because when α = 2 the first multiplicand is B
−1/3
1/6,1/6,

whereas the second one reads
(

Z
−1/3
1/2

)(1) d
= 22/3

(

Γ
1/3
1/2

)(1) d
= 22/3Γ

1/3
5/6.

Remark 9. We do not know whether Mα,γ(s) is still the Mellin transform of a positive
random variable in the remaining case 1/3 < γ ≤ 1/(α+1). This would be a consequence of
the exponential mixture property of the independent product Γu

u×Γ1−u
1 for all u ∈ (1/3, 1/2).

It is easily shown that the latter property holds for all u = 1/n, n ≥ 2, and we think that it
does for all u ∈ [0, 1/2].

4. Proof of Theorem A

We first reduce the problem to the situation where the bivariate process (X,L) starts from
a coordinate axis.

Lemma 10. Assume x < 0. For all y ∈ R one has

P(x,y)[T0 > t] ≍ P(x,0)[T0 > t], t→ +∞.

Proof. Fix t > 1 and suppose first y > 0. One has P(x,y)[T0 > t] ≤ P(x,0)[T0 > t] by a direct
comparison of the sample paths. On the other hand,

P(x,y)[T0 > t] ≥ P(x,y)[X1 < x, L1 < 0, T0 > t]

= P(x,y)

[

X1 < x,X∗
1 < 0, L1 < 0, P(X1,L1)[T0 > t− 1]

]

≥ P(x,y)[X1 < x,X∗
1 < 0, L1 < 0] × P(x,0)[T0 > t− 1] ≥ cP(x,0)[T0 > t]

for some c > 0, where the equality follows from the Markov property, the second inequality
from a comparison of the sample paths, and the third inequality from a support theorem
in uniform norm for the Lévy stable process L. More precisely, the latter process can be
approximated by any continuous function in uniform norm, because the support of its Lévy
measure is R - see Corollary 1 in [17].

Fix again t > 1 and suppose now y < 0. Then P(x,y)[T0 > t] ≥ P(x,0)[T0 > t], and similarly
as above one has

P(x,0)[T0 > t] ≥ P(x,0)

[

X1 < x,X∗
1 < 0, L1 < y, P(X1,L1)[T0 > t− 1]

]

≥ P(x,0)[X1 < x,X∗
1 < 0, L1 < y] × P(x,y)[T0 > t− 1] ≥ cP(x,y)[T0 > t]

for some c > 0. This completes the proof.
�



PERSISTENCE OF INTEGRATED STABLE PROCESSES 15

In the remainder of this section, we will implicitly assume, without loss of generality, that

{x = 0, y < 0} or {x < 0, y = 0}.

We start by studying the asymptotics at infinity of the density function of LT0 under P(x,y),
which we denote by f 0

x,y.

Lemma 11. There exists c > 0 such that

f 0
x,y(z) ∼ cz−1/(1−γ), z → +∞.

Proof. If x = 0, the asymptotic is a direct consequence of the explicit expression of f 0
(0,y)

which is given in Theorem B (i). If y = 0, Theorem B (ii) shows that the first positive pole of
the Mellin transform of LT0 under P(x,0) is at 1/(1−γ), and is simple. The required asymptotic
for f 0

(x,0) is then a consequence of a converse mapping theorem for Mellin transforms - see

e.g. Theorem 6.4 in [8].
�

Remark 12. (a) The converse mapping theorem for Mellin transforms yields also an explicit
expression for the constant c, but we shall not need this information in the sequel.

(b) We believe that the above asymptotic remains true for x < 0 and all y 6= 0. However,
the Mellin transform of LT0 under P(x,y) is then expressed with the help of a double integral
which is absolutely divergent, and whose singularities are difficult to study at first sight.

(c) The lemma entails by integration that

P(x,y)[LT0 > z] ∼ cχ−1 z−χ, z → +∞.

Heuristically, it is tempting to write by scaling LT0 = T
1/α
0 |L1| and since P(x,y)[|L1| > z] ∼

cz−α ≪ z−χ at infinity, we may infer that

P(x,y)[T0 > t] ≍ t−χ/α = t−θ, t→ +∞.

This explains the equivalence between finite moments stated in the introduction. We will
prove in the remainder of this section that this heuristic is actually correct.

The following lemma provides our key-estimate.

Lemma 13. For all ν ∈ (α(1− θ)/(α+ 1), 1) there exists c > 0 such that

E(x,y)

[
∫ t

0

1{T0>t−u} E(0,LT0
)

[

(X+
u )

−ν
]

du

]

∼ c t1−(1+1/α)ν−θ, t→ +∞.

Proof. We first assume ν ∈ (α/(α+1), 1) and transform the expression on the left-hand side.
From (3.1), Fubini’s theorem, and the Markov property, we obtain

∫ ∞

0

e−λt
E(x,y)

[

(X+
t )

−ν
]

dt = E(x,y)

[

e−λT0

∫ ∞

0

e−λt
E(0,LT0

)

[

(X+
t )

−ν
]

dt

]

, λ ≥ 0,
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both sides being finite because of Proposition 4. Integrating by parts shows then, with the
help of (3.2) and Proposition 4, that

λ

∫ ∞

0

e−λt

∫ ∞

t

(

E(x,y)

[

(X+
u )

−ν
]

− E(x,y)

[

E(0,LT0
)

[

(X+
u )

−ν
]

])

du dt

= E(x,y)

[

(1− e−λT0)

∫ ∞

0

e−λt
E(0,LT0

)

[

(X+
t )

−ν
]

dt

]

= E(x,y)

[
∫ ∞

0

λ e−λt

(
∫ t

0

1{T0>t−u}E(0,LT0
)

[

(X+
t )

−ν
]

du

)

dt

]

.

Inverting the Laplace transforms shows that

E(x,y)

[
∫ t

0

1{T0>t−u}E(0,LT0
)

[

(X+
u )

−ν
]

du

]

= H(x,y)(t), (4.1)

with the notation

H(x,y)(t) =

∫ +∞

t

(

E(x,y)

[

(X+
u )

−ν
]

− E(x,y)

[

E(0,LT0
)

[

(X+
u )

−ν
]

])

du, t > 0. (4.2)

It remains therefore to compute the asymptotics of the function H(x,y), which only depends
on the law of LT0 under P(x,y). From Proposition 3, the additive property of sine, and a
change of variable, we get

E(x,y)

[

(X+
u )

−ν
]

− E(x,y)

[

E(0,LT0
)

[

(X+
u )

−ν
]

]

=
2Γ(1− ν)

π

∫ ∞

0

λν−1e−cα,ρλαuα+1

Φu(λu
1+1/α) dλ

=
2Γ(1− ν)

π

1

u(1+1/α)ν

∫ ∞

0

ξν−1e−cα,ρξαΦu(ξ) dξ (4.3)

where the function Φu is defined by

Φu(ξ) = E(x,y)

[

cos

(

ξx

2u1+1/α
+ sα,ρ ξ

α +
νπ

2
+
ξ(y + LT0)

2u1/α

)

sin

(

ξx

2u1+1/α
+
ξ(y − LT0)

2u1/α

)]

=

∫ ∞

0

cos

(

ξx

2u1+1/α
+ sα,ρ ξ

α +
νπ

2
+
ξ(y + z)

2u1/α

)

sin

(

ξx

2u1+1/α
+
ξ(y − z)

2u1/α

)

f 0
x,y(z) dz.

Setting Fu(ξ, z) for the trigonometric function inside the integral, a change of variable entails

uθ
(
∫ ∞

0

Fu(ξ, z) f
0
x,y(z) dz

)

=

∫ ∞

0

Fu(ξ, ru
1/α) u

1
α(1−γ) f 0

x,y(ru
1/α) dr. (4.4)

A further application of the converse mapping theorem and of Theorem B shows that
f 0
x,y(z) ∼ cz1/(1−γ) as z → 0+, for some c > 0. This estimate and Lemma 11 yield the
uniform bound

f 0
x,y(z) ≤ Kz−1/(1−γ), z > 0

for some K > 0. Hence, for u large enough, the integrated function on the right-hand side
of (4.4) is dominated by K(r ∧ 1) r−(χ+1) for some K > 0, which is an integrable function
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because χ ∈ (0, 1). Applying the dominated convergence theorem in (4.4) and using Lemma
11 shows that there exists c > 0 such that for all ξ > 0

uθ Φu(ξ) → −c
∫ ∞

0

cos(sα,ρ ξ
α + (νπ + ξr)/2) sin(ξr/2)r−(1+χ) dr

= −(c/2)Γ(−χ) sin(sα,ρξα + (ν − χ)π/2)) ξχ

as u→ ∞, where the equality comes from (2.2), an integration by parts and some trigonom-
etry. Plugging back this expression in (4.3), we deduce by dominated convergence that

E(x,y)

[

(X+
u )

−ν
]

− E(x,y)

[

E(0,LT0
)

[

(X+
u )

−ν
]

]

∼
u→+∞

c

(
∫ ∞

0

ξχ+ν−1e−cα,ρξα sin(sα,ρξ
α + (ν − χ)π/2))dξ

)

u−((1+1/α)ν+θ) (4.5)

for some c > 0. A last computation shows that the integral on the right-hand side equals

(α + 1)
χ+ν
α Γ

(

χ + ν

α

)

sin(π(ρν + (ρ− 1)χ))

and is positive because ρν + (ρ − 1)χ ∈ (0, 1) for all ν ∈ (α(1 − θ)/(α + 1), 1) as can be
readily checked. The final result follows then by integration, and the proof is complete for
ν ∈ (α/(α+ 1), 1).

Suppose now ν ∈ (α(1− θ)/(α+ 1), α/(α+ 1)). The left-hand side of (4.1) is well-defined
and the estimate (4.5), which does not require the lower bound ν > α/(α + 1), together
with the positivity of the constant entails that the integral in (4.2) is absolutely convergent,
because (1+ 1/α)ν + θ > 1. By analytic continuation this shows that (4.1) remains valid for
ν ∈ (α(1− θ)/(α + 1), α/(α+ 1)), and the estimate (4.5) holds as well. This completes the
proof, again by integration of (4.5).

�

4.1. Proof of the upper bound. Fix A > 0 and ν ∈ (α/(α + 1), 1). By continuity and
positivity there exists ε > 0 such that for all z ∈ [0, A],

∫ 1

0

E(0,z)

[

(X+
u )

−ν
]

du ≥ ε.

For all t > 0, we get from (4.1), a change of variable and the self-similarity

t(1+1/α)ν+θ−1H(x,y)(t) ≥ t(1+1/α)ν+θ−1
E(x,y)

[

1{T0>t}

∫ t

0

E(0,LT0
)

[

(X+
u )

−ν
]

du

]

= tθ E(x,y)

[

1{T0>t}

∫ 1

0

E(0, 1

t1/α
LT0

)

[

(X+
u )

−ν
]

du

]

≥ εtθ P(x,y)[T0 > t, LT0 ≤ At1/α]

≥ εtθ
(

P(x,y)[T0 > t]− P(x,y)[T0 > t, LT0 ≥ At1/α]
)

≥ εtθ
(

P(x,y)[T0 > t]− P(x,y)[T0 > t]1−1/p
P(x,y)[LT0 ≥ At1/α]1/p

)

,
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where the last inequality follows from Hölder’s inequality and is valid for all p > 1. We now
take t > 1 and

1

p
= 1− 1

ln(t)
·

On the one hand, Lemma 11 entails

lim sup
t→+∞

tθ P(x,y)[T0 > t]
1

ln(t) P(x,y)[LT0 ≥ At1/α]1−
1

ln(t)

≤ lim sup
t→+∞

tθ P(x,y)[LT0 ≥ At1/α]
1− 1

ln(t) = K < +∞.

On the other hand, Lemma 13 shows that

t(1+1/α)ν+θ−1H(x,y)(t) → c > 0 as t→ +∞.

Putting everything together entails

tθP(x,y)[T0 > t] ≤ K̃

for some finite K̃ as soon as t is large enough.
�

4.2. Proof of the lower bound. We start with the following lemma :

Lemma 14. One has
∫ t

0

P(x,y)[T0 > u] du ≍ t1−θ as t→ +∞.

Proof. Firstly, integrating the above upper bound for P(x,y)[T0 > t] entails the existence of a
finite κ2 such that

∫ t

0

P(x,y)[T0 > u] du ≤ κ2 t
1−θ as t→ +∞.

To prove the lower inequality, we fix ν ∈ (α(1 − θ)/(1 + α), α/(1 + α)) and deduce from
Proposition 3 the uniform bound

E(0,y)[(X
+
u )

−ν ] ≤ Γ(1− ν)

π

∫ ∞

0

λν−1e−cα,ρλαuα+1

dλ ≤ Ku−ν(1+1/α), u > 0, (4.6)

for some finite constant K. Set η = ν(1 + 1/α) ∈ (0, 1) and fix ε ∈ (0, 1). Using (4.1) and
(4.6) we decompose

tη+θ−1H(x,y)(t) ≤ Ktη+θ−1

(

∫ t(1−ε)

0

P(x,y)[T0 > u]

(t− u)η
du +

∫ t

t(1−ε)

P(x,y)[T0 > u]

(t− u)η
du

)

≤ Kε−ηtθ−1

∫ t

0

P(x,y)[T0 > u] du +
Ktθε1−η

1− η
P(x,y)[T0 > t(1− ε)]

≤ K̃ε−η

(

tθ−1

∫ t

0

P(x,y)[T0 > u] du + ε

)
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for some finite K̃, where the third inequality follows from the upper bound. Applying Lemma
13 and taking ε small enough shows finally that there exists κ1 > 0 such that

∫ t

0

P(x,y)[T0 > u] du ≥ κ1 t
1−θ as t→ +∞.

�

We can now finish the proof. Fixing A > 0 and applying the mean value theorem entails

A tθ P(x,y)[T0 > t] ≥ tθ−1

∫ t+tA

t

P(x,y)[T0 > u] du ≥ κ1(1 + A)1−θ − κ2

as t → +∞, for some constants 0 < κ1 < κ2 < ∞ given by Lemma 14. Since θ < 1, the
lower bound follows in choosing A large enough.

�
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Available at arXiv:1203.6554

[3] A. J. Bray, S. N. Majumdar and G. Schehr. Persistence and first-passage properties in non-equilibrium
systems. Adv. Physics 62 (3), 225-361, 2013.

[4] A. Dembo, J. Ding, and F. Gao. Persistence of iterated partial sums. Ann. Inst. H. Poincaré Probab.
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