Using PMCMC in EM algorithm for stochastic mixed models: theoretical and practical issues - Archive ouverte HAL
Article Dans Une Revue Journal de la Société Française de Statistique Année : 2014

Using PMCMC in EM algorithm for stochastic mixed models: theoretical and practical issues

Résumé

Biological processes measured repeatedly among a series of individuals are standardly analyzed by mixed models. Recently, stochastic processes have been introduced to model the variability along time for each subject. Although the likelihood of these stochastic mixed models is intractable, various estimation methods have been proposed when the latent stochastic process is a discrete time finite state Markov chain. This is not the case when the hidden stochastic process is a continuous time process with non finite state space. This paper focuses on mixed models defined by parametric Stochastic Differential Equations (SDEs). We propose to use Particle MCMC algorithm for the maximum likelihood estimation of mixed SDE models, by combining it with SAEM algorithm. Theoretical and numerical convergence properties are discussed. Two simulated examples, an Ornstein-Uhlenbeck process and a time-inhomogeneous SDE with stochastic volatility, illustrate this estimator convergence, including the volatility parameter which is known to be hard to estimate.
Fichier principal
Vignette du fichier
Donnet_Samson_JSFdS.pdf (355.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00950760 , version 1 (03-03-2014)
hal-00950760 , version 2 (27-05-2020)

Identifiants

  • HAL Id : hal-00950760 , version 1

Citer

Sophie Donnet, Adeline Samson. Using PMCMC in EM algorithm for stochastic mixed models: theoretical and practical issues. Journal de la Société Française de Statistique, 2014, 155 (1), pp.49-72. ⟨hal-00950760v1⟩
948 Consultations
353 Téléchargements

Partager

More