Efficient cyanoaromatic photosensitizers for singlet oxygen production: synthesis and characterization of the transient reactive species.
Résumé
n order to graft cyanoaromatic molecules onto various inert supports, we designed two new cyanoanthracene derivatives of benzo[b]triphenylene-9,14-dicarbonitrile (DBTP, 1), which already demonstrated good photosensitizing properties. We synthesized 3-(N-hydroxypropyl)carboxamido-9,14-dicyanobenzo[b]triphenylene, 3 and 3-(N-N′-Boc-aminohexyl)carboxamido-9,14-dicyanobenzo[b]triphenylene, 4 and compared their photophysical properties in acetonitrile relative to those of the parent compound 1 and its carboxylic derivative 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid, 2. The transient species were analysed and the quantum yields of singlet oxygen production (ΦΔ) determined in acetonitrile. The effect of chemical functionalization can be considered negligible, since absorption spectra, fluorescence emission spectra and fluorescence lifetimes do not significantly change with the substituent. The triplet-triplet absorption spectra and the triplet excited state lifetimes are similar for the whole series. For compounds 1-4 high values of ΦΔ, close to that of the standard sensitizer 1H-phenalen-1-one (PN, ΦΔ ≈ 1), and higher than that of the well-known photosensitizer 9,10-dicyanoanthracene (DCA), are due to very efficient intersystem crossing from the singlet to the triplet excited state and subsequent energy transfer to ground state oxygen (3O2). They belong to a class of very efficient photosensitizers, absorbing visible light and stable under irradiation, they may be functionalized without significant changes to their photophysical behaviour, and grafted onto various supports.