Physical and chemical structure of planet-forming disks probed by millimeter observations and modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Physical and chemical structure of planet-forming disks probed by millimeter observations and modeling

Anne Dutrey
  • Fonction : Auteur
  • PersonId : 832400
Uma Gorti
  • Fonction : Auteur
S. Guilloteau
F. Hersant
  • Fonction : Auteur
  • PersonId : 853119
Michiel Hogerheijde
  • Fonction : Auteur
Meredith Hughes
  • Fonction : Auteur
Hideko Nomura
Chunhua Qi
Valentine Wakelam
  • Fonction : Auteur
  • PersonId : 828581

Résumé

Protoplanetary disks composed of dust and gas are ubiquitous around young stars and are commonly recognized as nurseries of planetary systems. Their lifetime, appearance, and structure are determined by an interplay between stellar radiation, gravity, thermal pressure, magnetic field, gas viscosity, turbulence, and rotation. Molecules and dust serve as major heating and cooling agents in disks. Dust grains dominate the disk opacities, reprocess most of the stellar radiation, and shield molecules from ionizing UV/X-ray photons. Disks also dynamically evolve by building up planetary systems which drastically change their gas and dust density structures. Over the past decade significant progress has been achieved in our understanding of disk chemical composition thanks to the upgrade or advent of new millimeter/Infrared facilities (SMA, PdBI, CARMA, Herschel, e-VLA, ALMA). Some major breakthroughs in our comprehension of the disk physics and chemistry have been done since PPV. This review will present and discuss the impact of such improvements on our understanding of the disk physical structure and chemical composition.

Dates et versions

hal-00949240 , version 1 (19-02-2014)

Identifiants

Citer

Anne Dutrey, Dmitry Semenov, E. Chapillon, Uma Gorti, S. Guilloteau, et al.. Physical and chemical structure of planet-forming disks probed by millimeter observations and modeling. Protostars and Planets VI, Henrik Beuther, Ralf S. Klessen, Cornelis P. Dullemond, and Thomas Henning (eds.), University of Arizona Press, Tucson, 914 pp., p.317-338, Jul 2013, Heidelberg, Germany. pp.317-338. ⟨hal-00949240⟩
234 Consultations
0 Téléchargements

Altmetric

Partager

More