Electromagnetic Wave Propagation Modeling for Finding Antenna Specifications and Positions in Tunnels of Arbitrary Cross-section, in Wave Propagation Theories and Applications, Yi Zheng (ed)
Résumé
This chapter is organized as follows : Section II introduces the modal approach for guiding structures. It is based on a full-wave method, namely the Transmission Line Matrix (TLM) method. These methods has been hampered by their large computational time when compared to asymptotic methods when large size environments are considered. Thus, a suitable 2.5 D TLM implementation to reduce the computational time and to include lossy dielectric walls of tunnels is briefly presented [2]. The computation cost is reduced compared to typical solutions by using the concept of Surface Impedance Boundary Condition (SIBC). Section III is devoted to the description of a methodology for the determination of antenna field specifications and positioning in operational scenarios at high frequencies. Section IV presents the validation of this methodology for a simple canonical case. Lastly, section V describes the analysis and results for a real scenario representative of tunnel environments. Finally, discussions and conclusions are developed.