Zeta functions of discrete self-similar sets.
Résumé
In this paper we study a class of countable and discrete subsets of a Euclidean space that are "self-similar" with respect to a finite set of (affine) similarities. Any such set can be interpreted as having a fractal structure. We introduce a zeta function for these sets, and derive basic analytic properties of this "fractal" zeta function. Motivating examples that come from combinatorial geometry and arithmetic are given particular attention.