Quantum singular complete integrability - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2016

Quantum singular complete integrability

Thierry Paul
  • Fonction : Auteur
  • PersonId : 878449
  • IdRef : 158973372

Résumé

We consider some perturbations of a family of pairwise commuting linear quantum Hamiltonians on the torus with possibly dense pure point spectra. We prove that the Rayleigh-Schrödinger perturbation series converge near each unperturbed eigenvalue under the form of a convergent quantum Birkhoff normal form. Moreover the family is jointly diagonalised by a common unitary operator explicitly constructed by a Newton type algorithm. This leads to the fact that the spectra of the family remain pure point. The results are uniform in the Planck constant near $\hbar= 0$. The unperturbed frequencies satisfy a small divisors condition %(Bruno type condition (including the Diophantine case) and we explicitly estimate how this condition can be released when the family tends to the unperturbed one.
Fichier principal
Vignette du fichier
newdef.pdf (545.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00945409 , version 1 (12-02-2014)
hal-00945409 , version 2 (23-06-2015)

Identifiants

Citer

Thierry Paul, Laurent Stolovitch. Quantum singular complete integrability. Journal of Functional Analysis, 2016, 271, pp.1377-1443. ⟨hal-00945409v2⟩
414 Consultations
254 Téléchargements

Altmetric

Partager

More