A q-analogue of Catalan Hankel determinants - Archive ouverte HAL
Article Dans Une Revue RIMS Kokyuroku Bessatsu Année : 2010

A q-analogue of Catalan Hankel determinants

Hiroyuki Tagawa
  • Fonction : Auteur

Résumé

In this paper we shall survey the various methods of evaluating Hankel determinants and as an illustration we evaluate some Hankel determinants of a q-analogue of Catalan numbers. Here we consider $\frac{(aq;q)_{n}}{(abq^{2};q)_{n}}$ as a q-analogue of Catalan numbers $C_{n}=\frac1{n+1}\binom{2n}{n}$, which is known as the moments of the little q-Jacobi polynomials. We also give several proofs of this q-analogue, in which we use lattice paths, the orthogonal polynomials, or the basic hypergeometric series. We also consider a q-analogue of Schröder Hankel determinants, and give a new proof of Moztkin Hankel determinants using an addition formula for ${}_2F_{1}$.

Dates et versions

hal-00943722 , version 1 (08-02-2014)

Identifiants

Citer

Masao Ishikawa, Hiroyuki Tagawa, Jiang Zeng. A q-analogue of Catalan Hankel determinants. RIMS Kokyuroku Bessatsu, 2010, B11, pp.19--42. ⟨hal-00943722⟩
90 Consultations
0 Téléchargements

Altmetric

Partager

More