A central limit theorem for the Euler characteristic of a Gaussian excursion set - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2016

A central limit theorem for the Euler characteristic of a Gaussian excursion set

Anne Estrade
  • Fonction : Auteur
  • PersonId : 841265
José R. León
  • Fonction : Auteur
  • PersonId : 872924

Résumé

We study the Euler characteristic of an excursion set of a stationary isotropic Gaussian random field $X:\Omega\times\mathbb{R}^d\to\mathbb{R}$. Let us fix a level $u\in \R$ and let us consider the excursion set above $u$, $A(T,u)=\{t\in T:\,X(t)\ge u\}$ where $T$ is a bounded cube $\subset \R^d$. The aim of this paper is to establish a central limit theorem for the Euler characteristic of $A(T,u)$ as $T$ grows to $\R^d$, as conjectured by R. Adler more than ten years ago. The required assumption on $X$ is $C^3$ regularity of the trajectories, non degeneracy of the Gaussian vector $X(t)$ and derivatives at any fixed point $t\in \R^d$ as well as integrability on $\R^d$ of the covariance function and its derivatives. The fact that $X$ is $C^3$ is stronger than Geman's assumption traditionally used in dimension one. Nevertheless, our result extends what is known in dimension one to higher dimension. In that case, the Euler characteristic of $A(T,u)$ equals the number of up-crossings of $X$ at level $u$, plus eventually one if $X$ is above $u$ at the left bound of the interval $T$.
Fichier principal
Vignette du fichier
estrade_leon_2.pdf (432.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00943054 , version 1 (08-02-2014)
hal-00943054 , version 2 (02-06-2014)
hal-00943054 , version 3 (10-04-2015)

Identifiants

Citer

Anne Estrade, José R. León. A central limit theorem for the Euler characteristic of a Gaussian excursion set. Annals of Probability, 2016, 44 (6), pp.3849-3878. ⟨10.1214/15-AOP1062⟩. ⟨hal-00943054v3⟩
716 Consultations
711 Téléchargements

Altmetric

Partager

More