Proximal Operator of Quotient Functions with Application to a Feasibility Problem in Query Optimization - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Proximal Operator of Quotient Functions with Application to a Feasibility Problem in Query Optimization

Guido Moerkotte
  • Fonction : Auteur
  • PersonId : 952127
Martin Montag
  • Fonction : Auteur
  • PersonId : 952128
Audrey Repetti
  • Fonction : Auteur
  • PersonId : 930327
Gabriele Steidl
  • Fonction : Auteur
  • PersonId : 928650
  • IdRef : 193452774

Résumé

In this paper we determine the proximity functions of the sum and the maximum of componentwise (reciprocal) quotients of positive vectors. For the sum of quotients, denoted by $Q_1$, the proximity function is just a componentwise shrinkage function which we call q-shrinkage. This is similar to the proximity function of the ℓ1-norm which is given by componentwise soft shrinkage. For the maximum of quotients $Q_∞$, the proximal function can be computed by first order primal dual methods involving epigraphical projections. The proximity functions of $Q_ν$ , $ν = 1,∞$ are applied to solve convex problems of the form $argmin_x Q _ν ( Ax/b )$ subject to $x ≥ 0$, $1^\top x ≤ 1$. Such problems are of interest in selectivity estimation for cost-based query optimizers in database management systems.
Fichier principal
Vignette du fichier
Quotient_Functions.pdf (238.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00942453 , version 1 (05-02-2014)
hal-00942453 , version 2 (21-02-2015)

Identifiants

  • HAL Id : hal-00942453 , version 1

Citer

Guido Moerkotte, Martin Montag, Audrey Repetti, Gabriele Steidl. Proximal Operator of Quotient Functions with Application to a Feasibility Problem in Query Optimization. 2014. ⟨hal-00942453v1⟩

Collections

UNIV-MLV
649 Consultations
680 Téléchargements

Partager

More