A new upper bound for the Dirac operator on hypersurfaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

A new upper bound for the Dirac operator on hypersurfaces

Résumé

We prove a new upper bound for the first eigenvalue of the Dirac operator of a compact hypersurface in any Riemannian spin manifold carrying a non-trivial twistor spinor without zeros on the hypersurface. The upper bound is expressed as the first eigenvalue of a drifting Schrödinger operator on the hypersurface. Moreover, using a recent approach developed by O.~Hijazi and S.~Montiel, we completely characterize the equality case when the ambient manifold is the standard hyperbolic space.
Fichier principal
Vignette du fichier
GHR_5.pdf (253.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00941566 , version 1 (04-02-2014)

Identifiants

Citer

Nicolas Ginoux, Georges Habib, Simon Raulot. A new upper bound for the Dirac operator on hypersurfaces. 2014. ⟨hal-00941566⟩
179 Consultations
98 Téléchargements

Altmetric

Partager

More