On the computation of the topology of plane curves - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

On the computation of the topology of plane curves

Résumé

Let P be a square free bivariate polynomial of degree at most d and with integer coefficients of bit size at most t. We give a deterministic algorithm for the computation of the topology of the real algebraic curve definit by P, i.e. a straight-line planar graph isotopic to the curve. Our main result is an algorithm for the computation of the local topology in a neighbourhood of each of the singular and critical points of the projection wrt the X axis in $\tilde{O} (d^6 t)$ bit operations where $\tilde{O}$ means that we ignore logarithmic factors in $d$ and $t$. Combined to state of the art sub-algorithms used for computing a Cylindrical Algebraic Decomposition, this result avoids a generic shear and gives a deterministic algorithm for the computation of the topology of the curve in $\tilde{O} (d^6 t + d^7)$ bit operations.
Fichier principal
Vignette du fichier
DiattaRouillierRoy_posted.pdf (240.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00935728 , version 1 (30-01-2014)
hal-00935728 , version 2 (20-05-2014)

Identifiants

Citer

Daouda Niang Diatta, Fabrice Rouillier, Marie-Françoise Roy. On the computation of the topology of plane curves. International Symposium on Symbolic and Algebraic Computation, Kobe University, Jul 2014, Kobe, Japan. pp.130-137, ⟨10.1145/2608628.2608670⟩. ⟨hal-00935728v2⟩
744 Consultations
405 Téléchargements

Altmetric

Partager

More