Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2005

Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity

Résumé

We show that the critical nonlinear elliptic Neumann problem \[ \Delta u -\mu u + u^{7/3} = 0 \ \ \mbox{in} \ \Omega, \ \ u >0 \ \mbox{in} \ \Omega \ \mbox{and} \ \frac{ \partial u}{\partial \nu} = 0 \ \ \mbox{on} \ \partial \Omega\] where $\Omega$ is a bounded and smooth domain in $\mathbb{R}^5$, has arbitrarily many solutions, provided that $\mu>0$ is small enough. More precisely, for any positive integer $K$, there exists $\mu_K >0$ such that for $0 <\mu < \mu_K $, the above problem has a nontrivial solution which blows up at $K$ interior points in $\Omega$, as $\mu \to 0$. The location of the blow-up points is related to the domain geometry. The solutions are obtained as critical points of some finite dimensional reduced energy functional. No assumption on the symmetry, geometry nor topology of the domain is needed.
Fichier principal
Vignette du fichier
rey-wei3.pdf (323.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00935403 , version 1 (23-01-2014)

Identifiants

  • HAL Id : hal-00935403 , version 1

Citer

Olivier Rey, Juncheng Wei. Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity. Journal of the European Mathematical Society, 2005, 7, pp.449-476. ⟨hal-00935403⟩
149 Consultations
146 Téléchargements

Partager

More