Comparison theorems for conjugate points in sub-Riemannian geometry - Archive ouverte HAL
Article Dans Une Revue ESAIM: Control, Optimisation and Calculus of Variations Année : 2016

Comparison theorems for conjugate points in sub-Riemannian geometry

Résumé

We prove sectional and Ricci-type comparison theorems for the existence of conjugate points along sub-Riemannian geodesics. In order to do that, we regard sub-Riemannian structures as a special kind of variational problems. In this setting, we identify a class of models, namely linear quadratic optimal control systems, that play the role of the constant curvature spaces. As an application, we prove a version of sub-Riemannian Bonnet-Myers theorem and we obtain some new results on conjugate points for 3D left-invariant sub-Riemannian structures.
Fichier principal
Vignette du fichier
comparison v8.pdf (558.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00931840 , version 1 (04-03-2015)

Identifiants

Citer

D. Barilari, L. Rizzi. Comparison theorems for conjugate points in sub-Riemannian geometry. ESAIM: Control, Optimisation and Calculus of Variations, 2016, 22 (2), ⟨10.1051/cocv/2015013⟩. ⟨hal-00931840⟩
333 Consultations
323 Téléchargements

Altmetric

Partager

More