Comparison theorems for conjugate points in sub-Riemannian geometry
Résumé
We prove sectional and Ricci-type comparison theorems for the existence of conjugate points along sub-Riemannian geodesics. In order to do that, we regard sub-Riemannian structures as a special kind of variational problems. In this setting, we identify a class of models, namely linear quadratic optimal control systems, that play the role of the constant curvature spaces. As an application, we prove a version of sub-Riemannian Bonnet-Myers theorem and we obtain some new results on conjugate points for 3D left-invariant sub-Riemannian structures.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...