On Natural Deduction in Classical First-Order Logic: Curry-Howard Correspondence, Strong Normalization and Herbrand's Theorem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

On Natural Deduction in Classical First-Order Logic: Curry-Howard Correspondence, Strong Normalization and Herbrand's Theorem

Résumé

We present a new Curry-Howard correspondence for classical first-order natural deduction. We add to the lambda calculus an operator which represents, from the viewpoint of programming, a mechanism for raising and catching multiple exceptions, and from the viewpoint of logic, the excluded middle over arbitrary prenex formulas. The machinery will allow to extend the idea of learning -- originally developed in Arithmetic -- to pure logic. We prove that our typed calculus is strongly normalizing and show that proof terms for simply existential statements reduce to a list of individual terms forming a Herbrand disjunction. A by-product of our approach is a natural-deduction proof and a computational interpretation of Herbrand's Theorem.
Fichier principal
Vignette du fichier
EMherbrand2.pdf (702.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00931128 , version 1 (14-01-2014)
hal-00931128 , version 2 (18-01-2014)
hal-00931128 , version 3 (25-02-2014)
hal-00931128 , version 4 (02-03-2014)
hal-00931128 , version 5 (19-09-2014)
hal-00931128 , version 6 (22-10-2015)
hal-00931128 , version 7 (02-03-2016)

Identifiants

  • HAL Id : hal-00931128 , version 5

Citer

Federico Aschieri, Margherita Zorzi. On Natural Deduction in Classical First-Order Logic: Curry-Howard Correspondence, Strong Normalization and Herbrand's Theorem. 2014. ⟨hal-00931128v5⟩
413 Consultations
2107 Téléchargements

Partager

More