Newton-Scant method for functions with values in a cone - Archive ouverte HAL
Article Dans Une Revue Serdica Mathematical Journal Année : 2013

Newton-Scant method for functions with values in a cone

Célia Jean-Alexis
  • Fonction : Auteur
  • PersonId : 950480

Résumé

This paper deals with variational inclusions of the form 0 ∈ K − f(x) − g(x) where f is a smooth function from a reflexive Banach space X into a Banach space Y , g is a function from X into Y admitting divided differences and K is a nonempty closed convex cone in the space Y . We show that the previous problem can be solved by a combination of two methods: the Newton and the Secant methods. We show that the order of the semilocal method obtained is equal to (1 + √5)/2. Numerical results are also given to illustrate the convergence at the end of the paper.
Fichier non déposé

Dates et versions

hal-00924150 , version 1 (06-01-2014)

Identifiants

  • HAL Id : hal-00924150 , version 1

Citer

Alain Pietrus, Célia Jean-Alexis. Newton-Scant method for functions with values in a cone. Serdica Mathematical Journal, 2013, 39, pp.271-286. ⟨hal-00924150⟩
96 Consultations
0 Téléchargements

Partager

More