On the treewidth and related parameters of random geometric graphs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

On the treewidth and related parameters of random geometric graphs

Résumé

We give asymptotically exact values for the treewidth tw(G) of a random geometric graph G(n, r) in [0,\sqrt{n}]^2. More precisely, we show that there exists some c1 > 0, such that for any constant 0 < r < c1, tw(G) = \Theta(log n/log log n), and also, there exists some c2 > c1, such that for any r = r(n) \geq c2, tw(G) = \Theta(r \sqrt{n}). Our proofs show that for the corresponding values of r the same asymptotic bounds also hold for the pathwidth and treedepth of a random geometric graph.
Fichier principal
Vignette du fichier
treewidth_new.pdf (444.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00923118 , version 1 (02-01-2014)

Identifiants

  • HAL Id : hal-00923118 , version 1

Citer

Dieter Mitsche, Guillem Perarnau. On the treewidth and related parameters of random geometric graphs. Symposium on Theoretical Aspects of Computer Science, Feb 2012, Paris, France. ⟨hal-00923118⟩
90 Consultations
166 Téléchargements

Partager

More