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Abstract

We give asymptotically exact values for the treewidth tw(G) of a random geometric graph
G ∈ G(n, r) in [0,

√
n]2. More precisely, we show that there exists some c1 > 0, such that

for any constant 0 < r < c1, tw(G) = Θ( logn
log logn ), and also, there exists some c2 > c1, such

that for any r = r(n) ≥ c2, tw(G) = Θ(r
√
n). Our proofs show that for the corresponding

values of r the same asymptotic bounds also hold for the pathwidth and the treedepth of a
random geometric graph.

Keywords: Random geometric graphs, treewidth, treedepth, pathwidth.

AMS subject classification: 05C80, 05C62, 90B15.

1 Introduction

Let V be a set of n points in the square Sn = [0,
√
n]2 and r = r(n) a nonnegative real number.

This choice of the square is only for convenience; by suitable scaling we could have chosen the
square [0, 1]2 and all the results would be still valid. We may assume that no two points are
placed in the same position, and thus we can identify each point with its position, that is, v ∈ V
refers also to the geometrical position of v in Sn.

The geometric graph G of V with radius r is the graph constructed by connecting two points
of V if their euclidean distance in Sn is smaller than r. For any two points u, v ∈ Sn we will
denote by distE(u, v) their euclidean distance and by distG(u, v) their distance in the graph G.

Then we define G(n, r) as the probability space of the geometric graphs of order n with
radius r. A graph G chosen uniformly at random from G(n, r) will be called a random geometric
graph and will be denoted by G ∈ G(n, r). Note that with probability one, no two vertices of
G ∈ G(n, r) are placed in the same position.

Starting with the seminal paper of Gilbert [7], random geometric graphs have in recent
decades received a lot of attention as a model for large communication networks such as sensor

∗This research is partially supported by the Catalan Research Council under project 2009SGR1387. The
first author is partially supported by the ICT Program of the European Union under contract number 215270
(FRONTS). The second author wants to thank the FPU grant from the Ministerio de Educación de España. An
extended abstract of this paper appeared in [16].
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networks. Network agents are represented by the vertices of the graph, and direct connectivity
is represented by edges. For applications of random geometric graphs, we refer to Chapter 3
of [10], and for a survey of many theoretical results, we refer to Penrose’s monograph [20].

In order to simplify calculations, we will use the well-known idea of Poissonization (see [20,
Section 1.7]): we assume that the vertices of G(n, r) are generated according to a Poisson point
process of intensity 1 over Sn. Conditioned under the fact that this Poisson point process gen-
erates exactly n vertices (which happens with probability Θ(1/

√
n)), this model and the G(n, r)

model have the same uniform distribution of the n vertices, and we will use this equivalence
from now on. Notice that, using a Poisson point process, the random variables indicating the
number of points in disjoint areas of Sn are independent.

All our stated results are asymptotic as n→∞. We use the usual notation a.a.s. to denote
asymptotically almost surely, i.e. with probability 1 − o(1). Besides, in order to be safe such
that all results from the Poisson model also hold for G(n, r), all statements that hold a.a.s. in
fact hold with probability at least 1− o(1/

√
n).

It is well known that the property of the existence of a giant component of order Θ(n)
undergoes a sharp threshold in G(n, r) (see e.g. [8]), this is, there exists a constant value rt such
that for any ε > 0, a.a.s. the largest component of G ∈ G(n, rt−ε) is of order O(log n), whereas
in G ∈ G(n, rt + ε), a single component of order Θ(n) is present, while the others have order
O(log n) (see [20, Chapter 10]). The exact value of rt is not yet known.

However, there exist two positive constants c− ≈
√

0.696, c+ ≈
√

3.372 (see [20], p.189) such
that c− ≤ rt ≤ c+. Moreover, simulation studies suggest that the exact value of rt ≈

√
1.44

(see again [20], p.189).
Since random geometric graphs have been heavily used for modeling communication net-

works, it is natural to analyze the expected complexity of different algorithms applied to this
class. Courcelle’s Theorem [4] states that any problem that can be expressed in monadic sec-
ond order logic, can be solved in linear time for the class of graphs with bounded treewidth.
This motivates the study of this parameter and other tree-like parameters on random geometric
graphs. In this paper, we study the behavior of the treewidth and the treedepth on random
geometric graphs.

The treewidth was introduced independently by Halin in [9] and by Robertson and Seymour
in [24].

For a graph G = (V,E) on n vertices, we call (T,W) a tree decomposition of G, where W is
a set of vertex subsets W1, . . . ,Ws ⊆ V , called bags, and T is a forest with vertices in W, such
that

1.
⋃s
i=1Wi = V .

2. For any e = uv ∈ E there exists a set Wi ∈ W such that u, v ∈Wi.

3. For any v ∈ V , the subgraph induced by the Wi 3 v is connected as a subgraph of T .

The width of a tree-decomposition is w(T,W) = max
1≤i≤s

|Wi| − 1, and the treewidth of a graph G

can be defined as
tw(G) = min

(T,W)
w(T,W).

Observe that if G is a graph with connected components H1, . . . ,Hm, then

tw(G) = max
1≤i≤m

tw(Hi) . (1)

The concept of treedepth has been introduced under different names in the literature. In
this paper we follow the definition given by Nešetřil and Ossona de Mendez as a tree-like
parameter in the scope of homomorphism theory, where it provides an alternative definition of
bounded expansion classes [18]. For the sake of completeness, we note that the treedepth is
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also equivalent to the height of an elimination tree (used for instance in the parallel Cholesky
decomposition [22]). Furthermore, analogous definitions can be found using the terminology of
rank function [17], vertex ranking number (or ordered coloring) [6] or weak coloring number [11].

We now give the precise definition of treedepth. Let T be a rooted tree. The height of T is
defined as the number of vertices of the longest rooted path. The closure of T is the graph that
has the same set of vertices and a pair of vertices is connected by an edge if one is an ancestor
of the other in T . We say that the tree T is an elimination tree of a connected graph G if G
is a subgraph of its closure. The treedepth of a connected graph G, td(G), is defined to be the
minimum height of an elimination tree of G.

The definition of treedepth can also be extended to nonconnected graphs. If G is a graph
with connected components H1, . . . ,Hm,

td(G) = max
1≤i≤m

td(Hi) . (2)

Hence, if S ⊂ V (G) separates G in two subsets A and B, we have

td(G) ≤ |S|+ max{td(A), td(B)} . (3)

Observe that if H is a subgraph of G, then

td(H) ≤ td(G) and tw(H) ≤ tw(G) . (4)

Both parameters are closely connected: while the treewidth of a graph G is a parameter
that measures the similarity between G and the class of trees in general, the treedepth of G
measures how close G is to a star. In other words, the treedepth also takes into account the
diameter of the tree we are comparing the graph with. The two parameters are related by the
following inequalities:

tw(G) ≤ td(G) ≤ (tw(G) + 1) log2 n,

both bounds being sharp (see [18]). Note also that tw(G) ≥ ω(G)− 1, where ω(G) denotes the
size of the largest clique in G.

Results of the paper. In this paper we study the values of tw(G) and td(G) of a random
geometric graph G ∈ G(n, r) for different values of r = r(n). In particular, we prove the following
two main theorems:

Theorem 1. There is some positive constant c1 < c−, such that for any 0 < r ≤ c1 and
G ∈ G(n, r), a.a.s. tw(G) = Θ( logn

log logn), and also a.a.s. td(G) = Θ( logn
log logn).

Theorem 2. There is some constant c2 > c+, such that for any r = r(n) ≥ c2 and G ∈ G(n, r),
a.a.s. tw(G) = Θ(r

√
n), and also a.a.s. td(G) = Θ(r

√
n).

Remark 1. Inspecting the proof of Theorem 1, one can easily see that, adapting constants,
Theorem 1 holds up to c−. In the case of Theorem 2, however, this is not clear to us.

Remark 2. For G ∈ G(n, r) with r constant, but r ≥ c2, by the results of [5], many problems
such as Steiner Tree, Feedback Vertex Set, Connected Vertex Cover can be solved
in time O(poly(n)3

√
n), while others like Connected Dominating Set, Connected Feed-

back Vertex Set, Min Cycle Cover, Longest Path, Longest Cycle, Graph Metric
Travelling Salesman Problem can be solved in time O(poly(n)4

√
n).

Remark 3. Other width parameters that are sandwiched between the treewidth and the treedepth
clearly then also have the same asymptotic behavior in G(n, r). For instance, the pathwidth of
a graph, introduced by Robertson and Seymour [23], measures the similarity between a graph
and a path. Since the pathwidth is well known to be bounded from below by the treewidth and
bounded from above by the treedepth (see Theorem 5.3 and Theorem 5.11 of [25]), the former
theorems imply that for those values of r = r(n) the pathwidth of the graph is of the same
order.
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Remark 4. Whereas intuitively it might be clear that around the threshold of the existence of a
giant component there should be a jump for parameters like treewidth or treedepth in G(n, r),
the orders of magnitude of these parameters are not so obvious (for us). Moreover, we point
out that there are differences between G(n, r) and G(n, p): it is known that in the Erdős-Rényi
random graph model G(n, p), as soon as the giant component appears, the graph has linear
treewidth (see [14]). In contrast to this, Theorem 2 shows that a random geometric graph
with a linear number of edges containing a giant component only has treewidth Θ(

√
n). This

different behavior of the two models can be explained by their different expansion properties
and the connection between balanced separators and treewidth (see Lemma 14 below). given
by Lemma 14. Classical random graphs have very good expansion properties, and thus it is
difficult to find small separators of large sets of vertices. The geometric properties of the model
G(n, r) imply the lack of large expanders. For this reason, in the latter case one can construct
a tree decomposition with smaller bags. On the other hand, in the subcritical regime (with a
linear number of edges, but before the existence of a giant component) the treedepth of G(n, p)
is Θ(log log n) (see [21]), whereas by Theorem 1, for random geometric graphs it is already
Θ( logn

log logn). Furthermore, in this range, in classical random graphs the treewidth is bounded by
a constant (see [21]), whereas our theorems show that in G(n, r) both treewidth and treedepth
are asymptotically of the same order for a wide range of parameters r. The fact that for
random geometric graphs the treedepth and treewidth are always asymptotically equal implies
that G(n, r) is more similar to a star–shaped tree than to a path–shaped tree, which in general
is not true for random graphs.

The paper is organized as follows. In Section 2 we define the cell graph of a geometric graph
and give some properties of it. The proof of Theorem 1 is presented in Section 3. Whereas the
lower bound follows from a standard argument using the clique number of G(n, r), the proof of
the upper bound is more involved. In Section 4 we continue by proving Theorem 2. Finally, in
Section 5 we conclude mentioning some open problems.

2 Properties of Deterministic Geometric Graphs

2.1 The cell graph of a geometric graph

For any constant ` > 0, we can tessellate Sn into squares of length ` called cells. We use this
tessellation to construct the cell graph CG(`) of G: each nonempty cell will be represented by
a vertex and two different vertices of CG(`) will be joined if there exist two points of G in
the corresponding cells that share an edge (see Figure 1, where the tessellation is omitted for
clarity).

For the sake of simplicity of the presentation, we assume that
√
n/` is an integer for the

values of ` considered in this paper. From now on, unless otherwise stated, we will call points
to the vertices of the geometric graph G and use the word vertex for the cells of CG(`). The
cell-graph CG(`) simplifies the original geometric graph G while preserving the same structure.
For any subgraph H of G we will denote its cell graph by CH(`).

Remark 5. Notice that CH(`) is always a subgraph of CG(`). Observe that, for any ` ≤ r/
√

2,
each nonempty cell contains points from exactly one connected component of G, since all the
points inside a cell are connected. Thus, if ` ≤ r/

√
2 there exists a natural bijection between

the connected components of G and the connected components of CG(`).

We need another auxiliary graph, the grid graph Lka,b, defined as follows; its vertex set is

V (Lka,b) = {(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b} , and (i, j)(i′, j′) ∈ E(Lka,b) if and only if (i, j) 6= (i′, j′)
and max{|i − i′|, |j − j′|} ≤ k. Note that by construction, for a geometric graph G in Sn with
radius r we have

CG(`) ⊆ Ldr/`e√
n/`,
√
n/`

, (5)
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(a) Random geometric graph (b) Cell-graph

Figure 1: A random geometric graph and its corresponding cell graph

contained as a subgraph.
The following lemma bounds the maximal number of different connected subgraphs of a

given size in Lka,b.

Lemma 3. The number of connected subgraphs of size s in Lka,b is at most O(ab(2k + 1)4s).

Proof. A connected subgraph is determined by a root v and any of its spanning trees, rooted
at v. Observe that there are ab many ways to choose v ∈ V (Lka,b). Moreover, the degree of a

vertex in Lka,b is at most (2k+1)2, since for any cell (i, j) there are at most (2k+1)2 cells (i′, j′)
such that max{|i− i′|, |j − j′|} ≤ k.

One can construct at most ((2k + 1)2)2s−3 ≤ (2k + 1)4s walks of length 2s − 2 that have
both start and end points at v. In particular, these walks contain all the possible spanning trees
rooted at v since a spanning tree has s − 1 edges and each edge is traversed twice. Thus, the
lemma follows.

Remark 6. Lemma 3 is certainly not tight. For the same problem on the integer lattice (each
cell is connected to the four closest ones) the asymptotic growth is poly(s)λs. However the
exact value of λ is not yet known. The best known lower and upper bounds for λ are 3.980137
and 4.65, respectively (see [2, 12]).

The following proposition bounds the treedepth of a strong product of a graph and a clique.
Given two graphs G1 and G2, the strong product G = G1 �G2 is defined as V (G) = V (G1)×
V (G2) and (u1, u2)(v1, v2) ∈ E(G) iff for i = 1, 2, either ui = vi or uivi ∈ E(Gi). Denote by Kt

the complete graph on t vertices.

Lemma 4. Let G = G1 �Kt. Then

td(G) ≤ t td(G1) .

Proof. Let T1 be a tree of height td(G1) that embeds G1 in its closure. Note also that Kt is
contained in the closure of a rooted path of order t, Pt. Observe that T1 � Pt is not a tree, but
it contains a tree T , in whose closure T1 � Pt is contained (see Figure 2). Indeed, T can be
constructed in the following way: each vertex u ∈ V (T1) is replaced by a path of order t (call
these new vertices u1, . . . , ut), and if there is an edge uv ∈ E(T1), such that u is ancestor of v,
then in T , ut is connected by an edge to v1 (the depth of v1 in T is exactly one more than the
depth of ut), see Figure 2. Note that T is a tree and its closure contains G as a subgraph. Since
each vertex of G1 is replaced by t vertices, td(G) ≤ t td(G1).
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Figure 2: Embedding of the strong product.

Observe also that for a geometric graph G,

G ⊆ CG(`) �Kt , (6)

where t is the maximum number of points inside a cell of the tessellation of length `.
Since we can express the treedepth of G in terms of the treedepth of its cell graph and the

latter one is a subgraph of Lka,b, the following proposition will be useful,

Proposition 5. Let Lka,b the grid graph defined as above and suppose that a ≤ b. Then

td(Lka,b) ≤ O(ka log b).

Proof. We present an elimination tree for Lka,b in a recursive way. First, note that td(Lka,k) =
O(ka), since the treedepth of a graph is always smaller than its order. Let us compute now
the treedepth of Lka,b. By removing the central copy of Lka,k in Lka,b, we disconnect the original

graph and we get two copies of Lka,(b−k)/2. Applying this recursively and using (3), we obtain

td(Lka,b) ≤ O(ka) + td(Lka,(b−k)/2) ≤ · · · ≤ O(ka) + · · ·+O(ka)︸ ︷︷ ︸
log b

+ td(Lka,k) = O(ka log b).

The following proposition will be very useful in the proof of Theorem 1, but can be applied
to any sparse geometric graph.

Proposition 6. Let H be a geometric graph of order m such that there are no more than t
points inside each cell of length ` = r/

√
2.

Then, we have

td(H) = O

(
max

{
m

logm
, t(logm)3

})
.
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Proof. Throughout this proof all the cells will have length ` = r/
√

2. Notice that by Remark 5
the connected components of the cell graph CH(`) are in one to one correspondence with the
connected components in H. Thus, we may assume that H is connected. We will show an upper
bound on td(H) by providing an elimination scheme for CH which then induces an elimination
scheme for H.

Fix a vertex v ∈ V (CH) corresponding to a cell of the tessellation. For any integer d ≥ 0,
denote by Vd the set of vertices in the cell graph at distance d from v. More precisely,

Vd = {u ∈ V (CH) : distCH (v, u) = d} .

Analogously, we define Pd to be the set of points of H inside the cells of Vd.
For the sake of convenience, we define

K =
m

(logm)2
.

The idea of the proof is to find a separator S of H that contains at most O(K) points. This
separator will split the graph into some smaller subgraphs. Using (3) and applying the same
procedure recursively to the remaining parts, we will get an upper bound on td(H).

Let f be the largest integer for which

f−1∑
d=0

|Pd| ≤
m

2
. (7)

Let f1 be the largest integer for which f1 ≤ f and |Pf1 | ≤ K and f2 be the smallest integer
for which f2 ≥ f and |Pf2 | ≤ K. Since H contains m points, f2 − f1 ≤ m

K = (logm)2.
Given a graph G and S ⊂ V (G), we will denote by G[S] the subgraph of G induced by S.

We decompose of CH into the following subgraphs (see Figure 3):

CS = CH [Vf1∪Vf2 ] , CA = CH

[
f1−1⋃
d=0

Vd

]
, CL = CH

 f2−1⋃
d=f1+1

Vd

 and CB = CH

 ⋃
d≥f2+1

Vd

 ,

and we define accordingly

HS = H[Pf1∪Pf2 ] , HA = H

[
f1−1⋃
d=0

Pd

]
, HL = H

 f2−1⋃
d=f1+1

Pd

 and HB = H

 ⋃
d≥f2+1

Pd

 .

Note also that in the case |Pf | ≤ K, we have f1 = f2 and CL and HL are graph on zero
vertices. Suppose this is not the case, and focus on CL.

Since ` = r/
√

2, by (5) we know that CL is a subgraph of at most 4 copies of L2
a,b (see

Figure 3), where a = (logm)2 and b = m, since f2 − f1 ≤ (logm)2 and |Pd| ≤ m for any d.
By (3) and Proposition 5, we get

td(CL) ≤ O(4a) + td(L2
a,b) = O

(
(logm)3

)
.

Moreover, HL ⊆ CL �Kt. Hence, by Lemma 4,

td(HL) = O
(
t(logm)3

)
.

By (3), now applied to H and the separator S = Vf1 ∪ Vf2 , we have

td(H) ≤ |S|+ max{td(HA), td(HL), td(HB)}
≤ 2K + max{td(HA), O

(
t(logm)3

)
, td(HB)}, (8)

7



Figure 3: Decomposition of CH

since |S| ≤ 2K by definition of f1 and f2.
We recursively repeat this procedure for the two subgraphs HA and HB. By the choice of f

in (7), both subgraphs contain at most m/2 points. Hence, the recursion depth of our procedure
is at most log2m = O(logm). This implies that

td(H) = O
(
max

{
K logm, t(logm)3

})
= O

(
max

{
m

logm
, t(logm)3

})
.

2.2 Separators and cells

During the rest of the section we will consider a tessellation of length ` = r/4.
Given S ⊆ Sn a set with positive measure, we denote by vol(S) the area of S and by ∂S its

boundary in the euclidean topology. We also use vol(∂S) to refer to the length of ∂S.
For any set A ⊆ V (H), let A = {x ∈ Sn : minv∈A distE(x, v) ≤ r

2} ⊆ Sn, and notice that
∂A =

{
x ∈ Sn : minv∈A distE(x, v) = r

2

}
.

We will use the fact that for any cell D and for any two elements u, v ∈ D

distE(u, v) ≤ r

2
√

2
. (9)

The following lemma shows that for any separator S of a geometric graph H, we can find
a large number of cells of length ` = r/4, whose points are entirely contained in S (see also
Figure 4, left).

Lemma 7. Let H be a connected geometric graph of order m and S ⊂ V (H) be a separator of
H. Fix a connected component H1 of H \ S and denote by A = V (H1).

If vol(A) < cn for some c < 1, there exists a set of cells DS of size dS, such that all points
inside DS belong to S and

dS = Ω
(
r−1
√

vol(A)
)
.

Proof. Define B = V (H) \ (S ∪A), the set of vertices that are contained neither in S nor in A.
For any pair of points v ∈ A and w ∈ B, we have that distE(v, w) ≥ r, since they are in

different connected components of H \ S. Denote the boundary of A by C = ∂A and observe
that since all the points in C lie at distance exactly r/2 from some point at A, they lie at distance
at least r/2 from any point in B.
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Let DS be the union of the cells that have nonempty intersection with C. Let us point
out that some of these cells may not contain any point of V (H). By Lemma 8 shown below,
dS = Ω(r−1

√
vol(A)).

Moreover, all the points contained in DS belong to S: by (9), any point u contained in DS

lies at distance at most r/(2
√

2) from some element c ∈ C. However, all the points of A ∪B lie
at distance at least r/2 from all the elements of C. Thus, u /∈ A ∪B, implying that u ∈ S.

Remark 7. Suppose that the separator set S induces t connected components in H. Since
` = r/4, by (5), CH is contained in the grid graph L4

4
√
n/r,4

√
n/r

. Consider the subgraph of

this grid graph, induced by the cells in DS . Observe that this subgraph forms at most t
connected components, at most one for each connected component of S. Denote these connected
components by DCj and their respective sizes by dCj . Then, by concavity of the square root
function,

dS =
∑
j

dCj = Ω
(
r−1
√

vol(A)
)
.

It remains to prove Lemma 8.

Lemma 8. With the notation of Lemma 7, we have

dS = Ω
(
r−1
√

vol(A)
)
.

Proof. Denote again by C = ∂A. We make use of the following isoperimetric inequality (see [19],
Theorem 1.6.1): for any set of positive measure S ⊂ R2,

vol(∂S) ≥ Ω(
√

vol(S)) . (10)

The inequality in [19] is stated for connected sets S, but by concavity of the square root function
it holds for general S. In particular, if vol(S) ≤ cn for some constant c < 1, the same inequality
holds for S ⊂ Sn. By hypothesis of Lemma 7, vol(A) < cn for some constant c < 1, thus,

vol(C) = vol(∂A) ≥ Ω(
√

vol(A)) . (11)

Recall that DS is defined to be the set of cells that have nonempty intersection with C. For
any cell D ∈ DS we denote by CD = C ∩ D, the restriction of C to D. We will show that the
length of CD is not too large by projecting the elements of CD onto ∂D, in such a way that the
length of the curve does not decrease by too much.

Let p : CD → ∂D the application that sends an element c ∈ CD ⊂ C being at distance r/2
from a point v ∈ A to the intersection of ∂D and the segment that joins c and v (see Figure 4,
right). In case that there is more than one point of A at the same distance from c, p(c) chooses
one of them arbitrarily.

Note that p is injective, since no two elements of CD can have the same image: indeed,
suppose that there exist two different c, c′ ∈ CD with corresponding points v, v′ ∈ A such that
p(c) = p(c′). Then, the segments cv and c′v′ would cross at p(c), and either distE(c, v′) < r/2
or distE(c′, v) < r/2 holds, contradicting the definition of C.

Let us show that the application is not too much contracting. Recall that distE(c, v) = r/2.

Since c, p(c) ∈ D, by (9) we have distE(c, p(c)) ≤ r
2
√

2
, and therefore distE(p(c), v) ≥

√
2−1

2
√

2
r by

the triangle inequality. A simple geometric argument shows that

vol(p(S)) ≥
r
2√

2−1
2
√

2
πr

vol(S).
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Since p is injective and vol(∂D) = r,

vol(CD) = O(vol(∂D)) = O(r) .

Using this upper bound for all the cells D ∈ DS ,

dS ≥
vol(C)

maxD∈DS vol(CD)
= Ω

(
r−1
√

vol(A)
)
.

Figure 4: Cells of DS and the projection of CD.

We finish with some properties of the tessellation with ` = r/4.

Lemma 9. Let H be a geometric graph with connected components H1, . . . ,Ht. Define Ai =
V (Hi) and consider a tessellation with ` = r/4. Then, for any cell D

1. if there exists a point v ∈ Ai such that v ∈ D, D ⊂ Ai.

2. there are at most 24 curves Ci = ∂Ai that intersect the cell.

Proof. For the first part, by (9), for any u ∈ D,

distE(u, v) <
r

2
,

and thus u ∈ Ai.
For the second part, observe that if Ci intersects D, then there must exist a point of v ∈ Ai

at distance at most r/2 from some point in D. There are most 24 cells satisfying this criterion,
namely the ones in the first and second neighborhood of D. Since all the points of a cell
belong to the same component (they are all connected), there are at most 24 different curves Ci
intersecting D.

3 Subcritical regime

In this section we compute the treedepth of a random geometric graph with r < c1, that is,
below the existence of a giant component. The constant c1 will be chosen in such a way that the
order of each component is a.a.s. at most log n (this value exists, see Theorem 10.3 of [20], and

10



is only chosen to simplify calculations). We also assume r = Θ(1). We will use the following
result several times: McDiarmid in [15] proved that for any r = Θ(1) and G ∈ G(n, r), a.a.s.

ω(G) = (1 + o(1))
log n

log logn
, (12)

In fact, by looking at the results closely, both results can be seen to hold with probability at
least 1− o(n−1/2).

By (2), the order of the largest connected component implies a coarse upper bound, namely

td(G) = O(log n) .

In order to find a better upper bound, more work is needed. First, we need the following simple
lemma, whose proof is included for completeness.

Lemma 10. Let X be a random variable that follows a Poisson distribution with parameter λ.
Then, for any k ≥ 2λ,

Pr(X ≥ k) ≤ 2 Pr(X = k).

Proof.

Pr(X ≥ k) =
∑
i≥k

Pr(X = i) =
∑
i≥k

e−λ
λi

i!

= e−λ
λk

k!

(
1 +

λ

k + 1
+

λ2

(k + 1)(k + 2)
+ . . .

)
≤ e−λ

λk

k!

∑
i≥0

(
λ

k

)i
= e−λ

λk

k!

1

1− λ
k

≤ 2e−λ
λk

k!
= 2 Pr(X = k),

where the last inequality follows from the assumption k ≥ 2λ.

For the sake of convenience, we define

Tmax =
2 log n

log log n
and T =

√
2 log n

log log n
.

From now on, we consider in this section the cell graph CG(`) of G ∈ G(n, r) with ` = r/
√

2
and write simply CG for CG(`). Notice that all the points inside a cell of CG form a clique.
Hence, by (12), each cell contains less than Tmax points a.a.s. For this particular tessellation,
we call a cell sparse if it contains less than T points, and dense otherwise.

Proposition 11. Every connected component H of G ∈ G(n, r) contains at most O(Tmax)
points in dense cells with probability at least 1− o(n−1/2).

Proof. For any connected component H of G we will show that the probability that the number
of points in dense cells of H is at least 10Tmax is o(n−3/2). Since there are clearly at most n
connected components in G, by taking a union bound over all them, with probability 1−o(n−1/2)
no component will have more than 10Tmax points in dense cells.

Let Ai be the number of points in the cell i. Since we are using a Poisson point process of
intensity 1, Ai follows a Poisson distribution with parameter λ = r/2, the expected number of
points in that cell. The probability that a cell is dense can be expressed as p = Pr(Ai ≥ T ).

By Lemma 10,

(1−O(T−1))
e−λ√
2πT

(
eλ

T

)T
= Pr(Ai = T ) ≤ p = Pr(Ai ≥ T ) ≤ 2 Pr(Ai = T ) ≤ 2e−λ√

2πT

(
eλ

T

)T
,(13)
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where we have used Stirling approximation T ! = (1 +O(T−1))
√

2πT
(
T
e

)T
.

To count the number of points lying in dense cells, we define the following random variables
for each cell i ∈ V (CG):

Yi =

{
t if i is dense and has t points inside,
0 otherwise.

Our aim is to show that YH =
∑

i∈V (CH) Yi is at most O(Tmax).
Notice that the probability that the cell i is sparse is 1− p, while the probability of having

T + j points is

Pr(Ai = T + j) = (1−O((T + j)−1)) e−λ√
2π(T+j)

(
eλ
T+j

)T+j
≤ ( eλT )T e−λ√

2πT
( eλT )j ,

for any integer j ≥ 0. Using (13) we have

Pr(Ai = T + j) ≤ 2p
(
eλ
T

)j
.

These observations lead to the definition of the following independent random variables (Ri):

Ri =


0 with probability 1− 2p,

T + j with probability 2p
(
eλ
T

)j
for any j ≥ 1,

T with probability 2p
(

1− eλ
T−eλ

)
.

First of all, observe that Ri is a probability distribution. The random variables Yi and
Ri have similar distributions. In particular, each variable Ri stochastically dominates the
corresponding random variable Yi. Analogously, we define R =

∑
i∈V (CH)Ri. Then,

Pr(R ≥ j) ≥ Pr(Y ≥ j) , (14)

for any j ≥ 0. In particular, this also holds, if j = O(Tmax).

Therefore, it is enough to compute an explicit upper bound for Pr(R ≥ 10Tmax). By the
assumption on c1, H contains at most log n points, and thus, there are |V (CH)| ≤ log n vertices
in CH . Since we aim for an upper bound, we may assume that |V (CH)| = log n.

Since ` = r/
√

2, by (5) we know that CH(`) is a subgraph of L2√
2n/r,

√
2n/r

. By Lemma 3

applied with s = log n there are at most O
(
n54 logn

)
< n8 ways to construct CH .

By a union bound over all the possible combinations that yield R > 10Tmax, we have

Pr(R > 10Tmax) ≤ n8
logn∑
m=1

∑
S∈(V (CH )

m )

∑
∑
i∈S ci≥10Tmax

Pr

(⋂
i∈S

Ri = ci

)
, (15)

where m counts the number of dense cells in the distribution given by the Ri, S is the set of
dense cells and ci is the number of points inside the dense cell i ∈ S. There are at most (log n)m

ways to choose the set S and at most (Tmax)m < (log n)m possible values for ci.

Recall that the variables Ri are independent and that Pr(Ri = T + j) = 2p
(
eλ
T

)j
for any

j ≥ 1. Therefore,

Pr

(⋂
i∈S

Ri = ci

)
=

m∏
i=1

2p

(
eλ

T

)ci−T
.

On the one hand, if m ≤ 10
√

log n, using (13),

m∏
i=1

2p

(
eλ

T

)ci−T
≤

m∏
i=1

4√
2πT

(
eλ

T

)ci
≤

m∏
i=1

(
eλ

T

)ci
≤ (2eλ

√
2πT p)

∑
ci
T ≤ (2eλ

√
2πT p)10

√
logn.

(16)

12



On the other hand, if m = 10
√

log n+ j for some integer j ≥ 1,

m∏
i=1

2p

(
eλ

T

)ci−T
≤ (2p)m = (2p)10

√
logn(2p)j .

Therefore, splitting equation (15) into two sums, we obtain

Pr(R > 10Tmax) ≤ n8
10
√

logn∑
m=1

(log n)2m (2eλ
√

2πT p)10
√

logn

+n8
(
2(log n)2p

)10
√

logn∑
j≥1

(
2(log n)2p

)j
.

From the bounds on p in (13), one can derive that
(
2(log n)2p

)
< 1/2, and the infinite sum

of the second term above is bounded from above by one. Thus,

Pr(R > 10Tmax) ≤ n8
(

10
√

log n
)(

(log n)2p(2eλ
√

2πT + 2)
)10
√

logn

= exp
{

8 log n+ 5 log log n+ 10
√

log n (2 log log n+ log p+O(log T ))
}
.

Moreover, by (13) we also have p ≤ 2e−λ√
2πT

(
eλ
T

)T
, and hence log p ≤ −(1 + o(1))T log T ≤

−
√

log n. Thus,

Pr(R > 10Tmax) < exp {−(1 + o(1))2 log n} = o(n−3/2). (17)

By (14), this also implies that Pr(Y > 10Tmax) = o(n−3/2), and by taking a union bound over
all components, this implies that the probability of having a connected component with more
than 10Tmax points inside dense cells is o(n−1/2).

Proof of Theorem 1. The lower bound on tw(G) follows easily from (12), which yields

td(G) ≥ tw(G) ≥ ω(G)− 1 = Ω

(
log n

log log n

)
.

For the upper bound, we provide a constructive way to create an elimination tree for G.
By (2) it suffices to bound from above the treedepth of each connected component. Let H be
a connected component of G.

From Proposition 11, there are at most O(Tmax) points in dense cells of H. We temporarily
remove all these points, and add them at the end. Let H ′ be the subgraph of H that remains
after removing the points in the dense cells.

Observe that now, by definition of sparse, every cell of CH′ contains at most T points.
Denoting by m = |V (H ′)|, by Proposition 6 we have

td(H ′) = O

(
max

{
m

logm
,T (logm)3

})
,

Since, with probability at least 1− o(n−3/2), m = O(log n), we have that for every component
H of G, td(H ′) = O(Tmax) with probability at least 1− o(n−1/2).

Recall that adding a new point to H can increase the treedepth by at most one unit. Thus,
td(H) ≤ td(H ′) +O(Tmax) = O(Tmax), and therefore, using (1), we have

td(G) = O

(
log n

log logn

)
with probability at least 1− o(n−1/2).
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4 Supercritical regime

Fix now r = r(n) ≥ c2, for some sufficiently large constant c2 ≥ c+ ≥ rt, the threshold radius
of having a giant component.

Recall that for any subset S ⊆ Sn = [0,
√
n]2 with positive measure, we denote by vol(S)

the area of A. We need the following standard lemma (which is a simple application of Chernoff
bounds for Poisson variables, see for example Theorem A.1.15 of [1]):

Lemma 12. For any S ⊆ Sn such that vol(S) ≥ c log n and any 0 < δ < 1/3, the number of
points inside S is

1. at most (1 + δ) vol(S) with probability at least 1− (eδ(1 + δ)−(1+δ)))vol(S) ≥ 1− e−
δ2

3
vol(S).

2. at least (1− δ) vol(S) with probability at least 1− e−
δ2

2
vol(S).

We will use the previous lemma to show that there exist separting sets with few points, and
consequently, give an upper bound on td(G).

Proposition 13. For any r ≥ c2, td(G) ≤ O(r
√
n) with probability 1− e−Ω(r

√
n).

Proof. Consider the tessellation of Sn into square cells of length ` = r. Denote by D(i,j) the
j-th cell in the i-th row, where 1 ≤ i, j ≤ a =

√
n/r.

Define

X1
1 =

(
a⋃
i=1

D(a/2,i)

)
∪

(
a⋃
i=1

D(i,a/2)

)
,

and consider the set Y 1
1 ⊂ V (G), containing the points insideX1

1 . Observe that Y 1
1 is a separator,

since ` = r, and it splits the graph into 4 components (some of them might be empty), G1
2, G2

2,
G3

2 and G4
2.

By Equation (3), we have

td(G) ≤ |Y 1
1 |+ max

1≤j≤4
{td(Gj2)} .

We then define analogously the sets Xj
2 , for all Gj2, and using Equation (3), we continue

iteratively. Let t denote the step where all the sets Xj
t have size one (see Figure 5).

Figure 5: Construction of the sets Xj
i .
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The treedepth of G will be bounded from above by the maximum number of points inside
any of the possible sets of cells

Xj1j2...jt = Xj1
1 ∪X

j2
2 ∪ · · · ∪X

jt
t

where 1 ≤ ji ≤ 4i−1.
Observe that |Xj

i | ≤ a2−(i−2) . The sets Xj1j2...jt = Xj1
1 ∪X

j2
2 ∪ · · · ∪X

jt
t are not disjoint,

but they all have the same size

|Xj1j2...jt | =
t∑
i=1

|Xji
i | ≤

t∑
i=1

a2−(i−2) = (1− 2−t)4a .

Let Yj1j2...jt denote the set of points in Xj1j2...jt . Thus, |Yj1j2...jt | is a random variable following
a Poisson distribution with mean at most (1− 2−t)4ar2.

By Lemma 12.1,

Pr
(
|Yj1j2...jt | ≥ (1 + δ)(1− 2−t)4ar2

)
< e−(1−2−t)4δ2ar2/3)

= e−Ω(r
√
n)) ,

for any 0 < δ < 1/3.
Moreover, there are at most

t∏
i=1

4i−1 = eO(t2)

sets of the form Xj1j2...jt . Observe also that, by construction, t = O(log a) = O(log n).
Now, by a union bound over all sets,

Pr
(
∃ j1, j2, . . . , jt : |Yj1j2...jt | > (1 + δ)(1− 2−t)4ar2

)
≤ eO(log2 n)−Ω(r

√
n) = e−Ω(r

√
n) .

Thus, we have that the treedepth of G is at most

td(G) ≤ (1 + δ)(1− 2−t)4ar2 = O(r
√
n) ,

with probability at least 1− e−Ω(r
√
n)).

For a lower bound on tw(G), we need the following explicit link between the treewidth of
a graph and the existence of a vertex separator with special properties. A vertex partition
V = (A,S,B) is a balanced k-partition if |S| = k+ 1, S separates A and B, and 1

3 (n− k − 1) ≤
|A|, |B| ≤ 2

3 (n− k − 1). In this case, S is also called a balanced separator. The following result
connecting balanced partitions and treewidth is due to Kloks [13].

Lemma 14 ([13]). Let G be a graph with n vertices and tw(G) ≤ k such that n ≥ k − 4. Then
G has a balanced k-partition.

From now on and until the end of the section, we consider the tessellation of Sn into square
cells of size r/4.

Recall that for any set A ⊂ V (H), we defined A = {x ∈ Sn : minv∈A distE(x, v) ≤ r/2}.
Observe that in a geometric graph, no direct relation exists between the size of A and the
volume of A. However, as the following lemma shows, in a random geometric graph, vol(A) can
be bounded from below using the size of A, if A has linear size.

Lemma 15. Let G ∈ G(n, r) with r ≥ c2. For any set A ⊆ V (G), |A| ≥ αn, there exists
c(α) > 0, such that

vol(A) ≥ c(α)n ,

with probability 1− e−Ω(n).
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Proof. Set m = m(α) to be the smallest constant integer such that

e−1

m!

(
m2

m− 1
+

m

(m− 1)2

)
≤ α

8
and m ≥ 4e,

which exists for any α > 0, since the left-hand side of the first condition tends to zero, when
m→ +∞.

Recall that the number of points inside a cell D follows a Poisson distribution with mean
λ = r2/16. Suppose that D contains t ≥ 0 points. Define then ZD to be the following random
variable:

ZD =

{
t if t ≥ mλ ,
0 otherwise ;

and let Z =
∑
ZD be the sum of these random variables over all the cells of the tessellation.

We may consider r ≥ 4, since by hypothesis r ≥ c2, for some c2 large enough. This implies
that λ ≥ 1. By Stirling bounds and calculation of the derivative one can see that for any m ≥ 1
the function f(λ) = e−λ λmλ

(mλ)! is decreasing for λ ∈ [1,∞), and thus

Pr(ZD = mλ) = e−λ
λmλ

(mλ)!
≤ e−1

m!
.

Also

Pr(ZD = mλ+ i) = e−λ
λmλ+i

(mλ+ i)!
= e−λ

λmλ+(i−1)

(mλ+ (i− 1))!
· λ

mλ+ i
≤ 1

m
Pr(ZD = mλ+ (i− 1)) ,

for any i ≥ 1. Hence,

E (ZD) =
∑
t≥mλ

tPr(ZD = t) ≤ e−1

m!

∑
i≥0

(mλ+ i)m−i ≤ e−1

m!

(
m2λ

m− 1
+

m

(m− 1)2

)
≤ αλ

4
,

where the last inequality follows from the definition of m. Since λ = r2/16 and there are 16n/r2

cells in the tessellation, we have

E (Z) ≤ αn

4
.

By Hoeffding bounds for unbounded random variables (the precise version we use here is Theo-
rem 1 of [3], applied with XD = εD = ZD, and thus S = T = Z, Y = Po(λ), mk = m = E (ZD)
for any k, and b = mλ − 1, so that m(b) = m and the measure µ[m] is exactly our probability
distribution of ZD, and x = 2E (Z))

Pr(Z > 2E (Z)) < inf
h<x

e−h2E(Z)E
(
ehZ
)
≤ e−2E(Z)E

(
eZ
)
.

Now, observe that

e2E(ZD) ≥ e2mλ Pr(ZD = mλ) ≥ e(2m−1)λ λmλ

(mλ)!

and

E
(
eZD

)
= Pr(ZD = 0) +

∑
i≥0

emλ+i Pr(ZD = mλ+ i) ≤ 1 + e(m−1)λ λmλ

(mλ)!

∑
i≥0

( e
m

)i
.

Since by assumption on m, e/m ≤ 1/4, we have

E
(
eZD

)
≤ 1 +

4

3

λmλ

(mλ)!
e(m−1)λ ≤ 3

2

λmλ

(mλ)!
e(m−1)λ .
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The random variables ZD are mutually independent. Thus,

e2E(Z) =
∏

e2E(ZD) ≥
(
λmλ

(mλ)!
e(2m−1)λ

) 16n
r2

and

E
(
eZ
)
≤
(

3

2

λmλ

(mλ)!
e(m−1)λ

) 16n
r2

,

and therefore

Pr(Z > 2E (Z)) ≤ e−2E(Z)E
(
eZ
)
≤
(

3

2
e−mλ

) 16n
r2

= e−Ω(n) .

Thus, with probability at least 1− e−Ω(n), there are at most αn/2 points of G contained in cells
with at least mλ points, and thus with the same probability there are at least αn/2 points of
A contained in cells with less than mλ points.

Therefore, with this probability, there are at least

αn/2

mλ
=

8αn

mr2
,

different cells D that contain at least one point from A. By Lemma 9.1, D ⊂ A, and

vol(A) ≥ 8αn

mr2
· vol(D) = c(α)n ,

with probability at least 1− e−Ω(n).

Using the previous lemmata, we are able to provide a lower bound for tw(G).

Theorem 16. There exists a constant c2 such that for any r ≥ c2, tw(G) ≥ Ω(r
√
n) with

probability at least 1− e−Ω(r
√
n).

Proof. We will show that there exists no balanced separator of size o(r
√
n) for the giant com-

ponent H. Then, by Lemma 14, this implies that tw(H) = Ω(r
√
n), and by Equation (1),

tw(G) ≥ tw(H) = Ω(r
√
n).

Let S ⊂ V (H) be a fixed balanced separator of H. Let S1, . . . , St denote subsets of S
that induce connected components in H. We may assume that S is minimal, and hence each
component of S contains at least one point of H. Therefore we can assume that t < r

√
n, as

otherwise there is nothing to prove.
The separator S is balanced and |S| = o(r

√
n) = o(n). Thus, there exist two sets A,B ⊂

V (H) (not necessarily connected) of size 1
3n(1−o(1)) ≤ |A|, |B| ≤ 2

3n(1+o(1)), such that H \S
contains no edges from A to B.

Since both sets have linear size, we may assume that |A| ≥ αn and |B| ≥ βn. Thus, by
Lemma 15, with probability at least 1− e−Ω(n), their respective volumes are also linear, which
implies that

c(α)n ≤ vol(A) ≤ (1− c(β))n ,

with at least this probability, where c(α), c(β) > 0 are given by Lemma 15.
Since the complementary event has probability only e−Ω(n) and we will below take union

bounds over a set of at most eνr
√
n events, we condition on this event from now on.

Noticing that vol(A) ≤ (1 − c(β))n, we can apply Lemma 7 to the separator S and each
connected component of A separately. Then, by concavity of the square root function, we have
a set of cells DS of size

dS = Ω
(
r−1
√

vol(A)
)
≥ K

√
n

r
,
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for some constant K > 0, such that all the points inside DS belong to S.

Now it suffices to show that, with high probability, there are at least r
√
n points inside any

potential set of cells DS . Denote by YDS the random variable counting the number of points

inside such a DS . Since vol(DS) = r2

16dS , by Lemma 12.2, we have that

Pr

(
YDS < (1− δ) r

2

16
dS

)
≤ e−

δ2r2

32
dS . (18)

We will now show that by taking a union bound over all possible balanced separators no
balanced separator contains less than (1 − δ) r216dS points. Write DS = ∪DCj , where DCj are
the sets of cells described in Remark 7. Recall that there are at most t such sets and we will
assume that this is the case. For the sake of simplicity, we will assume that r ≥ 4. By letting
dC1 , . . . , dCt the sizes of these connected components of DS , and setting a = b = 4

√
n/r ≤

√
n,

k = 4 and s = dCj in Lemma 3, we conclude that there are at most nt94(dC1
+···+dCt ) ≤ nte9dS

ways to construct DS .
Combining the inequality in (18) with a union bound over all separators DS of size dS ≥

K
√
n/r, the probability of having such a balanced separator is at most

Pr(∃S : S is balanced sep., |S| = o(r
√
n)) ≤

∑
dS≥K

√
n/r

∑
t≤r
√
n

∑
dC1

+···+dCt=dS

nte9dSe−γr
2dS , (19)

where γ = δ2/32 for any 0 < δ < 1/3.

Our aim for the rest of the proof is to show that each summand can be bounded from above
by an exponentially small term.

The number of ways to obtain the sum dS when using t nonnegative numbers is at most
dtS ≤ nt, and thus, the right hand side of (19) can be bounded from above by∑

dS≥
√
n/r

∑
t≤r
√
n

n2te9dSe−γr
2dS . (20)

If t ≤ c r
√
n

logn for some small constant c > 0, we can bound n2t < e2cr
√
n = o(eγr

2dS ), and also

e9dS = o(eγr
2dS ), for sufficiently large r and not too small γ.

Thus, we can assume that t > c r
√
n

logn . Denote by DH all cells that contain at least one
point of H. Suppose first that there is a constant fraction of the cells in DH \DS contained in

components of size at least
√
n logn
cr . We restrict our separator to these big components. For this

(sub)separator, since there are at most 16n/r2 cells, we have t ≤ c
( √

n
r logn

)
, and by the previous

arguments, for this (sub)separator, the probability of having too few points is at most e−γr
2dS

for some γ > 0, and hence the probability of having few points in S is also at most e−γr
2dS .

Thus, we may assume that there is at least a constant fraction of the cells in DH \ DS

contained in components of order at most
√
n logn
cr . Then, dS is minimized if there are at most

c′
√
n

r logn components of order
√
n logn
cr .

Observe that, by Lemma 9.2, there exist at most 24 different connected components Ai of
A, such that ∂Ai intersects a given cell. Hence, by applying the isoperimetric inequality given
in (10) over each component,

dS ≥
n1/4
√

log n√
cr

× c′

24

√
n

r log n
= Ω

(
n3/4

r3/2
√

log n

)
.

We distinguish two cases.
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First, we consider the case c2 ≤ r = O(
√

log n). Since t ≤ r
√
n, n2t = e2t logn ≤ e2r

√
n logn ≤

e2
√
n log3/2 n and eγr

2dS ≥ eγ
n3/4

√
r√

logn ≥ eγ
n3/4√
logn ,

n2te9dSe−γr
2dS ≤ e−γ′r2dS

for some 0 < γ′ < γ.
Otherwise, r = ω(

√
log n). Observe that t ≤ dS , since dCj ≥ 1 by definition. Therefore,

n2te9dSe−γr
2dS ≤ n2dSe9dSe−γr

2dS = e(2 logn+O(1)−γr2)dS ≤ e−γ′′r2dS

for some 0 < γ′′ < γ.
We showed that each term of (20) can be bounded by an exponentially small term. Hence,

there exists a constant ν > 0, such that with probability at most∑
dS≥K

√
n/r

∑
t≤r
√
n

n2te9dSe−νr
2dS = e−Ω(r

√
n) ,

there exists a separator S containing less than (1 − δ) r216dS = Ω(r
√
n) points connected to the

giant component, completing the proof.

Proof of Theorem 2. Theorem 2 follows directly by recalling that tw(G) ≤ td(G) and combining
Proposition 13 with Theorem 16.

5 Conclusion

We have shown that for random geometric graphs with 0 < r ≤ c1 and for r ≥ c2 the parameters
of treewidth and treedepth are asymptotically of the same order. The immediate natural ques-
tion that remains open is whether for all values of r = Θ(1), including the values of c1 ≤ r ≤ c2,
this happens to be true. For either of the parameters it would be interesting to know whether
there is a sharp threshold width of order o(1), in the sense that there exists some critical value
of the radius rc such that the treewidth (treedepth, respectively) of a graph with radius of at
most rc−o(1) is of order Θ( logn

log logn) with probability at least 1−ε, and the treewidth (treedepth,

respectively) of a graph with radius at least rc + o(1) is of order Θ(
√
n) with probability at

least 1− ε, for any ε > 0. We remark that the general result on sharp thresholds of monotone
properties of [8] implies only a sharp threshold width of order log3/4 n. Needless to say, in case
of the existence of such a sharp threshold, it would be nice to find this exact threshold value
for any of the two parameters (they might coincide). Using our methods, this, however, among
other problems, requires the knowledge of the exact threshold value rt of the appearance of the
giant component in a random geometric graph, which at the moment is not known.
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