On the maximum density of graphs with unique-path labellings - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Discrete Mathematics Année : 2013

On the maximum density of graphs with unique-path labellings

Résumé

A unique-path labelling of a simple, fi nite graph is a labelling of its edges with real numbers such that, for every ordered pair of vertices (u,v), there is at most one nondecreasing path from u to v. In this paper we prove that any graph on n vertices that admits a unique-path labelling has at most n log_2(n)/2 edges, and that this bound is tight for in finitely many values of n. Thus we signi cantly improve on the previously best known bounds. The main tool of the proof is a combinatorial lemma which might be of independent interest. For every n we also construct an n-vertex graph that admits a unique-path labelling and has n log2(n)/2 - O(n) edges.
Fichier principal
Vignette du fichier
Edge-labellings.pdf (248.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00923073 , version 1 (02-01-2014)

Identifiants

  • HAL Id : hal-00923073 , version 1

Citer

Abbas Mehrabian, Dieter Mitsche, Pawel Pralat. On the maximum density of graphs with unique-path labellings. SIAM Journal on Discrete Mathematics, 2013, 27 (3), pp.1228--1233. ⟨hal-00923073⟩
305 Consultations
69 Téléchargements

Partager

More