Stability and convergence of relaxation finite element schemes for the incompressible Navier-Stokes equations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2006

Stability and convergence of relaxation finite element schemes for the incompressible Navier-Stokes equations

Résumé

We are interested in the numerical modelling of the incompressible Navier-Stokes equations, in two space dimensions. The approach considered consists in developing semi-discrete finite element schemes for appropriate relaxation models, which formally arise as hyperbolic approximations of the Navier-Stokes equations. Stability properties of the relaxation finite element schemes are derived from estimating suitable modifications of the standard energy functional, that is suggested by the presence of relaxation terms. These techniques are also applied to prove error estimates and deduce the convergence of relaxation finite element schemes to the (smooth) solutions of the incompressible Navier-Stokes equations.
Fichier principal
Vignette du fichier
Katsaounis_et_al_2006.pdf (110.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00922833 , version 1 (30-12-2013)

Identifiants

  • HAL Id : hal-00922833 , version 1

Citer

Theodoros Katsaounis, Charalambos Makridakis, Chiara Simeoni. Stability and convergence of relaxation finite element schemes for the incompressible Navier-Stokes equations. Proceedings of the Tenth International Conference on Hyperbolic Problems, Sep 2004, Osaka, Japan. pp.87-92, ISBN4-946552-22-7. ⟨hal-00922833⟩

Collections

TDS-MACS
226 Consultations
78 Téléchargements

Partager

More