Convergence of the Upwind Interface Source method for hyperbolic conservation laws - Archive ouverte HAL
Communication Dans Un Congrès Année : 2003

Convergence of the Upwind Interface Source method for hyperbolic conservation laws

Résumé

This paper deals with typical questions arising in the analysis of numerical approximations for scalar conservation laws with a source term. We focus our attention on semi-discrete finite volume schemes, in the general case of a nonuniform spatial mesh. To define appropriate discretizations of the source term, we introduce the formalism peculiar to the Upwind Interface Source method and we establish conditions on the numerical functions so that the discrete solver preserves the steady state solutions. Then we formulate a rigorous definition of consistency, adapted to the class of well-balanced schemes, for which we are able to prove a Lax-Wendroff type convergence theorem. Some examples of numerical methods are discussed, in order to validate the arguments we propose.
Fichier principal
Vignette du fichier
Perthame_Simeoni_2003.pdf (188.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00922680 , version 1 (29-12-2013)
hal-00922680 , version 2 (30-12-2013)

Identifiants

Citer

Benoît Perthame, Chiara Simeoni. Convergence of the Upwind Interface Source method for hyperbolic conservation laws. Proceedings of the Ninth International Conference on Hyperbolic Problems, Mar 2002, CalTech, Pasadena, United States. pp.61-78, ⟨10.1007/978-3-642-55711-8_5⟩. ⟨hal-00922680v2⟩
170 Consultations
407 Téléchargements

Altmetric

Partager

More