High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods
Résumé
High-quality volumetric parameterization of computational domain plays an important role in three-dimensional isogeometric analysis. Reparameterization technique can improve the distribution of isoparametric curves/surfaces without changing the geometry. In this paper, using the reparameterization method, we investigate the high-quality construction of analysis-suitable NURBS volumetric parameterization. Firstly, we introduce the concept of volumetric reparameterization, and propose an optimal Möbius transformation to improve the quality of the isoparametric structure based on a new uniformity metric. Secondly, from given boundary NURBS surfaces, we present a two-stage scheme to construct the analysis-suitable volumetric parameterization: in the first step, uniformity-improved reparameterization is performed on the boundary surfaces to achieve high-quality isoparametric structure without changing the shape; in the second step, from a new variational harmonic metric and the reparameterized boundary surfaces, we construct the optimal inner control points and weights to achieve an analysis-suitable NURBS solid. Several examples with complicated geometry are presented to illustrate the effectiveness of proposed methods.
Fichier principal
template.pdf (946.35 Ko)
Télécharger le fichier
IGA-reparam.1.png (155.73 Ko)
Télécharger le fichier
IGA-reparam.0.jpg (27.99 Ko)
Télécharger le fichier
IGA-reparam.0.png (298.4 Ko)
Télécharger le fichier
IGA-reparam.1.jpg (18.94 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Format | Figure, Image |
---|---|
Origine | Fichiers produits par l'(les) auteur(s) |
Format | Figure, Image |
---|---|
Origine | Fichiers produits par l'(les) auteur(s) |
Format | Figure, Image |
---|---|
Origine | Fichiers produits par l'(les) auteur(s) |
Format | Figure, Image |
---|---|
Origine | Fichiers produits par l'(les) auteur(s) |
Loading...