Random symmetric matrices on Clifford algebras
Abstract
We consider Brownian motions and other processes (Ornstein-Uhlenbeck processes, spherical Brownian motions) on various sets of symmetric matrices constructed from algebra structures, and look at their associated spectral measure processes. This leads to the identification of the multiplicity of the eigenvalues, together with the identification of the spectral measures. For Clifford algebras, we thus recover Bott's periodicity.
Origin : Files produced by the author(s)
Loading...