Complex hyperbolic free groups with many parabolic elements. - Archive ouverte HAL
Chapitre D'ouvrage Année : 2015

Complex hyperbolic free groups with many parabolic elements.

John R. Parker
  • Fonction : Auteur
  • PersonId : 872180
Pierre Will
Connectez-vous pour contacter l'auteur

Résumé

We consider in this work representations of the of the fundamental group of the 3-punctured sphere in ${\rm PU}(2,1)$ such that the boundary loops are mapped to ${\rm PU}(2,1)$. We provide a system of coordinates on the corresponding representation variety, and analyse more specifically those representations corresponding to subgroups of $(3,3,\infty)$-groups. In particular we prove that it is possible to construct representations of the free group of rank two $\la a,b\ra$ in ${\rm PU}(2,1)$ for which $a$, $b$, $ab$, $ab^{-1}$, $ab^2$, $a^2b$ and $[a,b]$ all are mapped to parabolics.
Fichier principal
Vignette du fichier
Manyparabolics.pdf (816.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00918321 , version 1 (13-12-2013)

Identifiants

Citer

John R. Parker, Pierre Will. Complex hyperbolic free groups with many parabolic elements.. Geometry, groups and dynamics. , 639, AMS, pp.327-348, 2015, Contemporary Mathematics, 978-0-8218-9882-6. ⟨hal-00918321⟩

Collections

CNRS FOURIER INSMI
118 Consultations
124 Téléchargements

Altmetric

Partager

More