TopicRank: Graph-Based Topic Ranking for Keyphrase Extraction - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

TopicRank: Graph-Based Topic Ranking for Keyphrase Extraction

Adrien Bougouin
  • Fonction : Auteur
  • PersonId : 941171
Florian Boudin

Résumé

Keyphrase extraction is the task of iden- tifying single or multi-word expressions that represent the main topics of a doc- ument. In this paper we present TopicRank, a graph-based keyphrase extraction method that relies on a topical representation of the document. Candidate keyphrases are clustered into topics and used as vertices in a complete graph. A graph-based ranking model is applied to assign a significance score to each topic. Keyphrases are then generated by selecting a candidate from each of the top-ranked topics. We conducted experiments on four evaluation datasets of different languages and domains. Results show that TopicRank significantly outperforms state-of-the-art methods on three datasets.
Fichier principal
Vignette du fichier
I13-1062.pdf (716.63 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00917969 , version 1 (12-12-2013)

Identifiants

  • HAL Id : hal-00917969 , version 1

Citer

Adrien Bougouin, Florian Boudin, Béatrice Daille. TopicRank: Graph-Based Topic Ranking for Keyphrase Extraction. International Joint Conference on Natural Language Processing (IJCNLP), Oct 2013, Nagoya, Japan. pp.543-551. ⟨hal-00917969⟩
2208 Consultations
2225 Téléchargements

Partager

More