Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals
Abstract
Copper-based selenides are attracting increasing interest due to their outstanding optoelectronic and thermoelectric properties. Herein a novel colloidal synthetic route to prepare Cu2SnSe3 nanocrystals with controlled size, shape and composition is presented. The high yield of the developed procedure allowed its up-scaling to the production of grams of colloidal Cu2SnSe3 nanocrystals. These nanocrystals were used as building blocks for the production of Cu2SnSe3 bulk nanostructured materials by spark plasma sintering. The thermoelectric properties of the prepared nanocrystalline Cu2SnSe3 pellets were characterized in the temperature range from 300 to 720 K. The obtained results show the bottom-up production of nanocrystalline materials from solution-processed nanocrystals to be a potentially advantageous alternative to conventional methods of production of efficient thermoelectric materials.