Gas-phase interactions of organotin compounds with glycine - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Mass Spectrometry Année : 2013

Gas-phase interactions of organotin compounds with glycine

Résumé

Gas-phase interactions of organotins with glycine have been studied by combining mass spectrometry experiments and quantum calculations. Positive-ion electrospray spectra show that the interaction of di- and tri-organotins with glycine results in the formation of [(R)2Sn(Gly)-H]+ and [(R)3Sn(Gly)]+ ions, respectively. Di-organotin complexes appear much more reactive than those involving tri-organotins. (MS/MS) spectra of the [(R)3Sn(Gly)]+ ions are indeed simple and only show elimination of intact glycine, generating the [(R)3Sn]+ carbocation. On the other hand, MS/MS spectra of [(R)2Sn(Gly)-H]+ complexes are characterized by numerous fragmentation processes. Six of them, associated with elimination of H2O, CO, H2O + CO and formation of [(R)2SnOH]+ (−57 u),[(R)2SnNH2]+( −58 u) and [(R)2SnH]+ (−73 u), are systematically observed. Use of labeled glycines notably concludes that the hydrogen atoms eliminated in water and H2O + CO are labile hydrogens. A similar conclusion can be made for hydrogens of [(R2)SnOH]+and [(R2)SnNH2]+ ions. Interestingly, formation [(R)2SnH+ ions is characterized by a migration of one the α hydrogen of glycine onto the metallic center. Finally, several dissociation routes are observed and are characteristic of a given organic substituent. Calculations indicated that the interaction between organotins and glycine is mostly electrostatic. For [(R)2Sn(Gly)-H]+ complexes, a preferable bidentate interaction of the type η2-O,NH2 is observed, similar to that encountered for other metal ions. [(R)3Sn]+ ions strongly stabilize the zwitterionic form of glycine, which is practically degenerate with respect to neutral glycine. In addition, the interconversion between both forms is almost barrierless. Suitable mechanisms are proposed in order to account for the most relevant fragmentation processes.
Fichier principal
Vignette du fichier
manuscript_JYS_rev_HAL.doc.pdf (997.83 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00912483 , version 1 (05-10-2018)

Identifiants

Citer

Latifa Latrous, Jeanine Tortajada, Violette Haldys, Emmanuelle Léon, Catarina Correia, et al.. Gas-phase interactions of organotin compounds with glycine. Journal of Mass Spectrometry, 2013, 48 (7), pp.795-806. ⟨10.1002/jms.3223⟩. ⟨hal-00912483⟩
63 Consultations
111 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More