Unsupervised structured semantic inference for spoken dialog reservation tasks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Unsupervised structured semantic inference for spoken dialog reservation tasks

Résumé

This work proposes a generative model to infer latent semantic structures on top of manual speech transcriptions in a spoken dialog reservation task. The proposed model is akin to a standard semantic role labeling system, except that it is unsupervised, it does not rely on any syntactic information and it exploits concepts derived from a domain-specific ontology. The semantic structure is obtained with un- supervised Bayesian inference, using the Metropolis-Hastings sampling algorithm. It is evaluated both in terms of attachment accuracy and purity-collocation for clustering, and compared with strong baselines on the French MEDIA spoken-dialog corpus.
Fichier principal
Vignette du fichier
sigdial2013.pdf (262.91 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00911017 , version 1 (28-11-2013)

Identifiants

  • HAL Id : hal-00911017 , version 1

Citer

Alejandra Lorenzo, Lina M. Rojas-Barahona, Christophe Cerisara. Unsupervised structured semantic inference for spoken dialog reservation tasks. SIGDIAL - 14th annual SIGdial Meeting on Discourse and Dialogue - 2013, Aug 2013, Metz, France. pp.12-20. ⟨hal-00911017⟩
279 Consultations
381 Téléchargements

Partager

More