Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a full-discretization scheme - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a full-discretization scheme

Résumé

We study the long-time behavior of fully discretized semilinear SPDEs with additive space-time white noise, which admit a unique invariant probability measure $\mu$. We show that the average of regular enough test functions with respect to the (possibly non unique) invariant laws of the approximations are close to the corresponding quantity for $\mu$. More precisely, we analyze the rate of the convergence with respect to the different discretization parameters. Here we focus on the discretization in time thanks to a scheme of Euler type, and on a Finite Element discretization in space. The results rely on the use of a Poisson equation; we obtain that the rates of convergence for the invariant laws are given by the weak order of the discretization on finite time intervals: order $1/2$ with respect to the time-step and order $1$ with respect to the mesh-size.
Fichier principal
Vignette du fichier
WevPeFe.pdf (482.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00910323 , version 1 (28-11-2013)
hal-00910323 , version 2 (16-02-2014)

Identifiants

  • HAL Id : hal-00910323 , version 1

Citer

Charles-Edouard Bréhier, Marie Kopec. Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a full-discretization scheme. 2013. ⟨hal-00910323v1⟩

Collections

ENPC CERMICS
338 Consultations
322 Téléchargements

Partager

More