Fracture simulation for zirconia toughened alumina microstructure - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Engineering Computations Année : 2013

Fracture simulation for zirconia toughened alumina microstructure

Résumé

Purpose - The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures. // Design/methodology/approach - A two-dimensional finite element model is developed with an actual Al2O3-10 vol% ZrO2 microstructure. A bilinear, time-independent cohesive zone law is implemented for describing fracture behaviour of grain boundaries. Simulation conditions are similar to those found at contact between a head and a cup of hip prosthesis. Residual stresses arisen from the mismatch of thermal coefficient between grains are determined. Then, effects of a micro-void and contact stress magnitude are investigated with models containing residual stresses. For the purpose of simulating fatigue behaviour, cyclic loadings are applied to the models. // Findings - Results show that crack density is gradually increased with increasing magnitude of contact stress or number of fatigue cycles. It is also identified that a micro-void brings about the increase of crack density rate. // Social implications - This paper is the first step for predicting the lifetime of ceramic implants. The social implications would appear in the next few years about health issues. // Originality/value - This proposed finite element method allows describing fracture and fatigue behaviours of alumina-zirconia microstructures for hip prosthesis, provided that a microstructure image is available.
Fichier principal
Vignette du fichier
JG-EC-30-Orig.pdf (1.97 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00909537 , version 1 (28-11-2013)

Identifiants

Citer

Kyungmok Kim, Jean Geringer, Bernard Forest. Fracture simulation for zirconia toughened alumina microstructure. Engineering Computations, 2013, 30 (5), pp.648-664. ⟨10.1108/EC-08-2013-0163⟩. ⟨hal-00909537⟩
214 Consultations
152 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More