Vlasov on GPU (VOG Project) - Archive ouverte HAL Access content directly
Journal Articles ESAIM: Proceedings Year : 2013

Vlasov on GPU (VOG Project)


This work concerns the numerical simulation of the Vlasov-Poisson set of equations using semi- Lagrangian methods on Graphical Processing Units (GPU). To accomplish this goal, modifications to traditional methods had to be implemented. First and foremost, a reformulation of semi-Lagrangian methods is performed, which enables us to rewrite the governing equations as a circulant matrix operating on the vector of unknowns. This product calculation can be performed efficiently using FFT routines. Second, to overcome the limitation of single precision inherent in GPU, a {\delta}f type method is adopted which only needs refinement in specialized areas of phase space but not throughout. Thus, a GPU Vlasov-Poisson solver can indeed perform high precision simulations (since it uses very high order reconstruction methods and a large number of grid points in phase space). We show results for rather academic test cases on Landau damping and also for physically relevant phenomena such as the bump on tail instability and the simulation of Kinetic Electrostatic Electron Nonlinear (KEEN) waves.
Fichier principal
Vignette du fichier
proc134303.pdf (7.66 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-00908498 , version 1 (05-04-2022)


Attribution - CC BY 4.0



Luca Marradi, Bedros Afeyan, Michel Mehrenberger, Nicolas Crouseilles, Christophe Steiner, et al.. Vlasov on GPU (VOG Project). ESAIM: Proceedings, 2013, 43, p. 37-58. ⟨10.1051/proc/201343003⟩. ⟨hal-00908498⟩
788 View
14 Download



Gmail Facebook Twitter LinkedIn More