Efficient approximation of MIN SET COVER by "low-complexity" exponential algorithms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Efficient approximation of MIN SET COVER by "low-complexity" exponential algorithms

Résumé

We study approximation of min set cover combining ideas and results from polynomial approximation and from exact computation (with non-trivial worst case complexity upper bounds) for NP-hard problems. We design approximation algorithms for min set cover achieving ratios that cannot be achieved in polynomial time (unless problems in NP could be solved by slightly super-polynomial algorithms) with worst-case complexity much lower (though super-polynomial) than those of an exact computation.
Fichier principal
Vignette du fichier
cahier_278.pdf (305.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00906972 , version 1 (20-11-2013)

Identifiants

  • HAL Id : hal-00906972 , version 1

Citer

Nicolas Bourgeois, Bruno Escoffier, Vangelis Paschos. Efficient approximation of MIN SET COVER by "low-complexity" exponential algorithms. 2008. ⟨hal-00906972⟩
73 Consultations
1553 Téléchargements

Partager

More