Unsupervised dense crowd detection by multiscale texture analysis - Archive ouverte HAL
Article Dans Une Revue Pattern Recognition Letters Année : 2013

Unsupervised dense crowd detection by multiscale texture analysis

Résumé

This study introduces a totally unsupervised method for the detection and location of dense crowds in images without context-awareness. With the perspective of setting up fully autonomous video-surveillance systems, automatic detection and location of crowds is a crucial step that is going to point which areas of the image have to be analyzed. After retrieving multiscale texture-related feature vectors from the image, a binary classification is conducted to determine which parts of the image belong to the crowd and which to the background. The algorithm presented can be operated on images without any prior knowledge of any kind and is totally unsupervised.
Fichier principal
Vignette du fichier
UnsupervisedDenseCrowdDetectionByMultiscaleTextureAnalysis-v2.pdf (700.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00904210 , version 1 (14-11-2013)

Identifiants

  • HAL Id : hal-00904210 , version 1

Citer

Fagette Antoine, Nicolas Courty, Daniel Racoceanu, Jean-Yves Dufour. Unsupervised dense crowd detection by multiscale texture analysis. Pattern Recognition Letters, 2013, pp.1-27. ⟨hal-00904210⟩
492 Consultations
417 Téléchargements

Partager

More