ILClass: Error-Driven Antecedent Learning For Evolving Takagi-Sugeno Classification Systems - Archive ouverte HAL
Article Dans Une Revue Applied Soft Computing Année : 2013

ILClass: Error-Driven Antecedent Learning For Evolving Takagi-Sugeno Classification Systems

Résumé

The purpose of this research work is to go beyond the traditional classification systems in which the set of recognizable categories is predefined at the conception phase and keeps unchanged during its operation. Motivated by the increasing needs of flexible classifiers that can be continuously adapted to cope with dynamic environments, we propose a new evolving classification system and an incremental learning algorithm called ILClass. The classifier is learned in incremental and lifelong manner and able to learn new classes from few samples. Our approach is based on first-order Takagi-Sugeno (TS) system. The main contribution of this paper consists in proposing a global incremental learning paradigm in which antecedent and consequent are learned in synergy, contrary to the existing approaches where they are learned separately. Output feedback is used in controlled manner to bias antecedent adaptation toward difficult data samples in order to improve system accuracy. Our system is evaluated using different well-known benchmarks, with a special focus on its capacity of learning new classes.
Fichier principal
Vignette du fichier
SoftComVfinale.pdf (292.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00881779 , version 1 (28-01-2014)

Identifiants

Citer

Abdullah Almaksour, Eric Anquetil. ILClass: Error-Driven Antecedent Learning For Evolving Takagi-Sugeno Classification Systems. Applied Soft Computing, 2013, pp.1-16. ⟨10.1016/j.asoc.2013.10.007⟩. ⟨hal-00881779⟩
261 Consultations
236 Téléchargements

Altmetric

Partager

More