Learning Multiple Temporal Matching for Time Series Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Learning Multiple Temporal Matching for Time Series Classification

Résumé

In real applications, time series are generally of complex structure, exhibiting different global behaviors within classes. To discriminate such challenging time series, we propose a multiple temporal matching approach that reveals the commonly shared features within classes, and the most differential ones across classes. For this, we rely on a new framework based on the variance/covariance criterion to strengthen or weaken matched observations according to the induced variability within and between classes. The experiments performed on real and synthetic datasets demonstrate the ability of the multiple temporal matching approach to capture fine-grained distinctions between time series.
Fichier principal
Vignette du fichier
Learn-TS-IDA13-Final.pdf (300.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00881159 , version 1 (22-11-2013)

Identifiants

  • HAL Id : hal-00881159 , version 1

Citer

Cedric Frambourg, Ahlame Douzal-Chouakria, Eric Gaussier. Learning Multiple Temporal Matching for Time Series Classification. Intelligent Data Analysis, 2013, London, United Kingdom. pp.198-209. ⟨hal-00881159⟩
163 Consultations
692 Téléchargements

Partager

More