Polymorphic Functions with Set-Theoretic Types. Part 2: Local Type Inference and Type Reconstruction - Archive ouverte HAL
Rapport Année : 2013

Polymorphic Functions with Set-Theoretic Types. Part 2: Local Type Inference and Type Reconstruction

Kim Nguyen
Pietro Abate
  • Fonction : Auteur
  • PersonId : 860627

Résumé

This article is the second part of a two articles series about a calculus with higher-order polymorphic functions, recursive types with arrow and product type constructors and set-theoretic type connectives (union, intersection, and negation). In the first part, presented in a companion paper, we defined and studied the syntax, semantics, and evaluation of the explicitly-typed version of the calculus, in which type instantiation is driven by explicit instantiation annotations. In this second part we present a local type inference system that allows the programmer to omit explicit instantiation annotations, and a type reconstruction system that allows the programmer to omit explicit type annotations. The work presented in the two articles provides the theoretical foundations and technical machinery needed to design and implement higher-order polymorphic functional languages for semi-structured data.
Fichier principal
Vignette du fichier
2part-acmmain.pdf (726.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00880744 , version 1 (06-11-2013)
hal-00880744 , version 2 (16-11-2013)
hal-00880744 , version 3 (15-01-2014)
hal-00880744 , version 4 (26-11-2014)

Identifiants

  • HAL Id : hal-00880744 , version 2

Citer

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Pietro Abate. Polymorphic Functions with Set-Theoretic Types. Part 2: Local Type Inference and Type Reconstruction. 2013. ⟨hal-00880744v2⟩
412 Consultations
448 Téléchargements

Partager

More