Centroid-based texture classification using the generalized Gamma distribution - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Centroid-based texture classification using the generalized Gamma distribution

Résumé

This paper introduces a centroid-based (CB) supervised classification algorithm of textured images. In the context of scale/orientation decomposition, we demonstrate the possibility to develop centroid approach based on a stochastic modeling. The aim of this paper is twofold. Firstly, we introduce the generalized Gamma distribution (GGammaD) for the modeling of wavelet coefficients. A comparative goodness-of-fit study with various univariate models reveals the potential of the proposed model. Secondly, we propose an algorithm to estimate the centroid from the collection of GGammaD parameters. To speed-up the convergence of the steepest descent, we propose to include the Fisher information matrix in the optimization step. Experiments from various conventional texture databases are conducted and demonstrate the interest of the proposed classification algorithm.
Fichier principal
Vignette du fichier
Schutz13_EUSIPCO.pdf (569.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00878744 , version 1 (30-10-2013)

Identifiants

  • HAL Id : hal-00878744 , version 1

Citer

Aurélien Schutz, Lionel Bombrun, Yannick Berthoumieu, Mohamed Najim. Centroid-based texture classification using the generalized Gamma distribution. 21st European Signal Processing Conference (EUSIPCO), Sep 2013, Marrakech, Morocco. pp.1-5. ⟨hal-00878744⟩
201 Consultations
219 Téléchargements

Partager

More