Texture based image retrieval and classification of very high resolution maritime pine forest images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Texture based image retrieval and classification of very high resolution maritime pine forest images

Résumé

Textural analysis can bring valuable information in the classification or the segmentation process of land covers displaying regular patterns in very high resolution remotely sensed images. In this study, we investigate how features extracted by multivariate modeling of the local spatial dependence in the wavelet domain can efficiently capture the textural content of maritime pine forest images in comparison with a commonly used texture analysis approach, the GLCM. To evaluate the performances of the tested methods, we used a content based image retrieval framework and created a database of image patches representing different development stages of the forest stands. Results show that multivariate models display higher retrieval rates than GLCM-based methods with yet a higher sensitivity to the dominant orientation in anisotropic textures. These observations open up new perspectives in the use of multivariate modeling for textural features extraction in very high resolution image classification.
Fichier principal
Vignette du fichier
Regniers13_IGARSS.pdf (400.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00878727 , version 1 (30-10-2013)

Identifiants

  • HAL Id : hal-00878727 , version 1

Citer

Olivier Regniers, Jean-Pierre da Costa, Gilbert Grenier, Christian Germain, Lionel Bombrun. Texture based image retrieval and classification of very high resolution maritime pine forest images. IEEE International Geoscience and Remote Sensing Symposium, Jul 2013, Melbourne, Australia. pp.4038-4041. ⟨hal-00878727⟩
362 Consultations
508 Téléchargements

Partager

More