An evaluation of the sparsity degree for sparse recovery with deterministic measurement matrices - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2013

An evaluation of the sparsity degree for sparse recovery with deterministic measurement matrices

Charles H Dossal
  • Fonction : Auteur
  • PersonId : 1136514
Nelly Pustelnik
Philippe Ricoux
  • Fonction : Auteur
  • PersonId : 938361

Résumé

The paper deals with the estimation of the maximal sparsity degree for which a given measurement matrix allows sparse reconstruction through l1-minimization. This problem is a key issue in different applications featuring particular types of measurement matrices, as for instance in the framework of tomography with low number of views. In this framework, while the exact bound is NP hard to compute, most classical criteria guarantee lower bounds that are numerically too pessimistic. In order to achieve an accurate estimation, we propose an efficient greedy algorithm that provides an upper bound for this maximal sparsity. Based on polytope theory, the algorithm consists in finding sparse vectors that cannot be recovered by l1-minimization. Moreover, in order to deal with noisy measurements, theoretical conditions leading to a more restrictive but reasonable bounds are investigated. Numerical results are presented for discrete versions of tomo\-graphy measurement matrices, which are stacked Radon transforms corresponding to different tomograph views.
Fichier principal
Vignette du fichier
jmiv_hal.pdf (232.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00878620 , version 1 (30-10-2013)

Identifiants

Citer

Yannick Berthoumieu, Charles H Dossal, Nelly Pustelnik, Philippe Ricoux, Flavius Turcu. An evaluation of the sparsity degree for sparse recovery with deterministic measurement matrices. Journal of Mathematical Imaging and Vision, 2013, ⟨10.1007/s10851-013-0453-4⟩. ⟨hal-00878620⟩
272 Consultations
692 Téléchargements

Altmetric

Partager

More