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Abstract

The paper deals with the estimation of the maximal sparsity degree for which a given
measurement matrix allows sparse reconstruction through ℓ1-minimization. This problem is a
key issue in different applications featuring particular types of measurement matrices, as for
instance in the framework of tomography with low number of views. In this framework, while
the exact bound is NP hard to compute, most classical criteria guarantee lower bounds that
are numerically too pessimistic. In order to achieve an accurate estimation, we propose an
efficient greedy algorithm that provides an upper bound for this maximal sparsity. Based on
polytope theory, the algorithm consists in finding sparse vectors that cannot be recovered by
ℓ1-minimization. Moreover, in order to deal with noisy measurements, theoretical conditions
leading to a more restrictive but reasonable bounds are investigated. Numerical results are
presented for discrete versions of tomography measurement matrices, which are stacked Radon
transforms corresponding to different tomograph views.
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1 Introduction

The main goal of compressed sensing is the design of sensing matrices A ∈ R
M×N with M ≪ N

for which every s-sparse signal x ∈ R
N can be recovered from the observations y = Ax+n where

n ∈ R
M denotes an additive perturbation [14]. The design consists in specifying a number M of

observations as few as possible to ensure the reconstruction of all (or most of) the s-sparse signals.

Most results in the literature provide sufficient conditions for the correct reconstruction of
signals up to some theoretically guaranteed sparsity, in terms of quantifiable properties of a matrix
A, such as the coherence [14] or the RIP constants [8]. Since such conditions are not necessary,
this guaranteed sparsity is in general lower than the actual maximal sparsity achievable for A

(this latter is NP-hard to compute for an arbitrary matrix). The gap between the guaranteed
sparsity and the actual sparsity is a challenging issue in practical applications. While it seems
to be less significant for some particular classes of matrices, like those having random normalized
columns [7, 25], it might get prohibitively large for other types of matrices, such as those issued
from tomography applications [27]. In such cases, though the aforementioned criteria give very
pessimistic sparsity estimates, correct reconstruction can still be achieved for signals that are
significantly less sparse than predicted.

In the paper we tackle this problem through an alternative approach that rather provides upper
sparsity bounds instead of lower bounds. More precisely, we propose an algorithm that performs,
in the case of an arbitrary matrix A, a (relatively) fast search for sparse vectors for which the
reconstruction fails. The proposed algorithm is an efficient extension for arbitrary matrices of
a greedy algorithm that was given by Dossal et al in [16] in the case of matrices with random
normalized columns. The new version of the algorithm is used to numerically study discrete
models of tomography sensing matrices, in comparison with standard methods that provide quite
pessimistic sparsity bounds. Reconstructing vectors with positive elements is also discussed, as
being of interest in the tomography analysis of certain industrial materials having an inherent
sparse structure. We also adress the problem of sparsity bounds relatively to the robustness to
noise in the reconstruction.

Let us recall the standard framework in compressive sensing. In the noiseless case (n = 0),
the fact that any s-sparse vector x can be recovered from the measurement y = Ax amounts to
saying that A is one-to-one when restricted to the set of the s-sparse vectors. The latter set can
be viewed as the closed ball B0(s) of radius s in R

N under the pseudo-norm

‖x‖0 = #{i : xi 6= 0} x = (xi)1≤i≤N ∈ R
N .

This one-to-one behaviour of A means that any x in B0(s) is the unique solution of the problem

Argmin
x∈RN

‖x‖0 subject to y = Ax. (1)

In the noisy case n 6= 0, the optimization problem is defined as:

Argmin
x∈RN

‖x‖0 subject to ‖y −Ax‖2 ≤ ǫ, (2)
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for suitably chosen ǫ > 0. Due to the non-convexity of the problems (1) and (2), solving them
by conventional optimization techniques does not guarantee, in general, the convergence to the
global minimizer (see a contrario [4]). Moreover, a straightforward approach using combinatorial
techniques yields a NP-hard problem. The standard workaround is to convexify (2) by minimizing
an ℓ1-norm instead of the ℓ0-pseudo-norm, i.e. by considering the optimization problem

Argmin
x∈RN

‖x‖1 subject to ‖y −Ax‖2 ≤ ǫ. (3)

Unlike ℓ0-minimization, many tractable algorithms have been proposed to solve problem (3) or its
Lagrangian formulation (see [9, 2] and references therein), i.e.

Argmin
x∈RN

1

2
‖y −Ax‖22 + γ‖x‖1, (4)

for suitably chosen γ > 0. Since the problems (2) and (3) are not equivalent, a key question is when
a sparse vector x is the unique solution of the ℓ1-minimization problem. If this happens, we state
that x is ℓ1- identifiable. In particular, if the ℓ1 and ℓ0 problems both have the unique solution x

for any x in B0(s), the matrix A is said to verify the ℓ1/ℓ0 - equivalence up to the sparsity s. These
properties stand at the core of compressive sensing and the literature offers various techniques to
handle this problem [14, 21, 13, 19, 8, 33, 11]:

• A general characterization of the ℓ1/ℓ0 equivalence in the noiseless case is given by Donoho
[13] via the notion of neighbourliness from polytope theory; Its dual interpretation is known
as the Null Space Property [21, 22].

• Sufficient conditions for ℓ1/ℓ0 equivalence are formulated by Donoho and Huo in terms of
matrix coherence [14], and, alternatively, by Candès et al. [8] via the Restricted Isometry
Property (RIP);

• Sufficient conditions for ℓ1-identifiability are given by Fuchs [19] and Tropp [33] using first
order necessary conditions and properties of the sub-differential of the ℓ1 norm.

Such criteria may include robustness to noise [18, 8, 33]. Unfortunately, for a given arbitrary
matrix A, the main downside is that their numerically evaluation is NP-hard. This is why most
results in the literature rather focus on emphasizing classes of matrices that theoretically match
such criteria. Typical and widely studied examples are classes of matrices with random normalized
columns, which are shown to match RIP-based criteria with high probability, due to their particular
eigenvalue distribution [8]. Other examples and interesting proposal can be found in [6], [12], [5],
[23], or [24].

Nevertheless, various applications may naturally confine the sensing design to particular classes
of matrices that do not fit into these frameworks. This happens for instance in tomography appli-
cations, where the sensing matrices consist, within discrete models, in vertically stacked discrete
Radon transforms, taken for different polar angles. The design itself is reduced in this context to
choosing a suitable set of polar angles. Numerical results suggest that these tomography-related
matrices tend to be neither RIP- nor coherence-friendly, in the sense these criteria yield sparsity
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lower-bounds that are too pessimistic. An alternative approach consists in finding upper-bounds
instead, which amounts, for a given matrix A, to search for unidentifiable vectors as sparse as
possible. This strategy was used in the work of Dossal et al [16] in the case of random matrices
with normalized columns. The proposed greedy algorithm is related to Donoho’s characterization
on the ℓ1/ℓ0-equivalence in terms of polytope neighbourliness [13].

In the paper we extend this greedy algorithm in [16] to the case of a general matrix A, without
a significant complexity increase. We do this in order to numerically study tomography-issued
sensing matrices. Since this algorithm covers only the noiseless case, we also propose a way to
estimate an approximation of the sparsity degree ensuring ℓ1-recovery of sparse signals in presence
of noise. This latter approach is related to the works of Fuchs [18] and Tropp [33] based on the
notion of exact recovery coefficient (ERC).

Notations: Throughout the paper, vectors are denoted by bold lower case letters and matrices by
upper case ones. We denote (ei)1≤i≤N the canonical base in R

N . The i-th coordinate of a vector
x ∈ R

N is denoted by xi and the i-th column of a matrix A ∈ R
M×N is denoted by ai. We denote

by AI ∈ R
M×|I| the matrix formed by taking the columns of A indexed by I ⊂ {1, . . . , N} and by

xI = (xi)i∈I ∈ R
|I|. We define for p ≥ 1 the ℓp-norm of a vector x ∈ R

N as ‖x‖p =
(∑N

i=1 |xi|p
)1/p

.
Finally, the notation A+ stands for the Moore-Penrose inverse of A, and PA := AA+ will denote
the orthogonal projector onto the range of A.

2 Fast searching non-identifiable vectors for arbitrary matrices.

In [16], Dossal et al. proposed a greedy algorithm allowing a fast search of ℓ1-unidentifiable vectors
for a sensing matrix A having normalized random columns. In this section an efficient extension
of this algorithm is given for an arbitrary sensing matrix A. This gives in particular an upper
bound for the maximal sparsity for which A still has the ℓ1/ℓ0 - equivalence property.

Let us first recall Donoho’s characterization in [13] and the related greedy algorithm in [16].
We denote B1 the closed unit ball of RN relatively to the ℓ1-norm. The ball B1 is a polytope
having the signed multiples of the canonical base as vertices, and in which any face is a simplex.
Let P ⊂ R

M be the image of B1 under the operator A, also called the quotient polytope. Obviously
P is the convex hull of the 2N points (±ai)1≤i≤N in R

M , which are the images through A of the
vertices of B1. In general, these points might not be all vertices of P , and, similarly, A might
not carry faces of B1 onto faces of P . If however this happens up to an affine dimension say s,
the polytope P is called s − neighbourly . Donoho shows that the s-neighbourliness of P is in fact
equivalent to the ℓ1/ℓ0 equivalence property of A up to the sparsity s.

For a given matrix A, the least integer s for which either of the statements above fails is called
by Donoho the ℓ1/ℓ0 - equivalence breakdown point (EPB) of A. As one can see above, an exact
computation of the EBP of an arbitrary matrix is NP-hard, because it involves to examine the
images through A of all the faces of B1 up to some affine dimension s.

However, searching for upper bounds of the EBP is more feasible. According to the above
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characterization, all one needs to do is find, by whatever means, faces of B1, of affine dimension
as low as possible, that are not sent by A onto faces of P , but rather into its convex interior. In
order to find such face images, although not rigorously, it is natural to look for them as “inwards”
into the polytope P as possible, meaning as close to the origin (the center of P ) as possible.

This is the principle on which the greedy algorithm in [16] is based, and which will be discussed
in the following. Let k ≥ 1 and fix a (k − 1) face of B1. This can be done by fixing a sign vector
σ whose support has cardinal k and defining the (k − 1)-face of B1 denoted

Fσ = Conv{σiei : i ∈ Supp(σ)},

which is carried by A onto the subset of P :

AFσ = Conv{σiai : i ∈ Supp(σ)}.

In order to precise the distance between such a set and the origin in R
M let us consider the following

definition. For any x in R
N with support say I, let

d(x) = (A+
I )

T sign(xI), Dx = ‖d(x)‖2. (5)

Then the distance from the origin to AFσ is 1/Dσ . Moreover, the orthogonal affine projection of
the origin onto AFσ is the vector d(σ)/D2

σ . Note also that, for a given x in R
N , both d(x) and

the ℓ1-identifiability of x depend only on the sign of x. This distance is illustrated in Figure 1.

a2

a3

−a1

−a2

−a3

a1

d(x)

Hx

1
‖d(x)‖2

Figure 1: Illustration of 1
‖d(x)‖2

: Distance from the center of the polytope to the hyperplane Hx

going through {sign(xi)ai}i∈I where I ⊂ {1, . . . , N}).

According to these facts, the greedy algorithm proposed by Dossal et al. [16] looks for sign
vectors x that are not ℓ1-identifiable among those with the largest possible values of Dx, i.e. corre-
sponding to faces of P as close to the origin as possible. This algorithm is recalled in Algorithm 1.
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Algorithm 1 [16] - Extract sparse vectors with large Dx.

Set the pruning rate Q and the extension rate R,
Set the sparsity degree S,

Set Σ
(1)
max = {e1, . . . ,eN},

For s = 2, . . . , S

Σmax = ∅,
For every x ∈ Σ

(s−1)
max

(Î , ô) = argmax[R]

i/∈I(x);
o∈{−1,+1}

‖d(x + oei)‖2

For j ∈ {1, . . . , R}
⌊ Σmax = Σmax ∪ {x+ ôjeÎj}

Set Σ
(s)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

More specifically, each iteration (i.e. for s = 1, 2, . . . ) constructs a set, denoted Σ
(s)
max, of s-sparse

vectors with the largest Dx values, which are candidates to unidentifiability. At each iteration, the

new candidate set of s-sparse vectors Σ
(s)
max is built from the previous vector set Σ

(s−1)
max (e.g. set

of vectors with a sparsity degree s − 1). It results that each step looks for the s-sparse vectors x̃

such that x̃ = x+ oei where x denotes a (s-1)-sparse vector from Σ
(s−1)
max , o ∈ {−1,+1} and ei is a

Dirac vector at the location i. In Algorithm 1, the notation argmax[R] (resp. argmax[Q]) denotes
the R pairs (i, o) which correspond to the R largest values of ‖d(x + oei)‖2 (resp. the Q vectors
x yielding the Q largest values of ‖d(x)‖2).

The complexity of Algorithm 1 is given in the following proposition.

Proposition 2.1 For every sparsity degree s > 2, the complexity of the s step in Algorithm 1 is

O
(
2Q(N − s+ 1)(N(s + 1) + s3)

)
≪ O(2sCN

s ).

Note that the majorant above represents the complexity of the s step in the exact computation of
EBP (A).

Proof. Let x belongs to the set Σ
(s−1)
max which denotes a set of Q vectors of size s − 1. The

computation of ‖d(x+ oei)‖2 has a complexity of O(N +Ns+ s3). Moreover, in order to extract
the R vectors with the largest Dx, the computation of the norm has to be proceeded 2Q(N−(s−1))
times.

Albeit being polynomial, the computational cost of each iteration stays too high to be used in
realistic experiments, mainly due to the fourth degree term in Ns3. However, it is showed in [16]
that this can be much improved under the assumption that the matrix A has random normalized
columns. Indeed, one can write [16, Proposition 4]:

‖d(x̃)‖22 = ‖d(x)‖22 + ‖ãj‖22| 〈d(x),aj〉 − o|2 (6)
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where x denotes a s-sparse vector with a support I ⊂ {1, . . . , N}, o ∈ {−1,+1}, x̃ denotes a (s+1)-
sparse vector with the support I ∪ {j} where j ∈ {1, . . . , N} \ I, and ãj ∈ Span (ai, i ∈ I ∪ {j})
such that 〈ãj ,aj〉 = 1, and, for every i ∈ I, 〈ãj,ai〉 = 0. Under the additional assumption on
the columns of A, the norms ‖ãi‖22 are close to 1, so their computation in (6) can be avoided.
This leads to an accelerated version of Algorithm 1 for random matrices with normalized columns,
which will be refereed as Algorithm 1-bis in the following.

The complexity of this accelerated version of Algorithm 1 is given below.

Proposition 2.2 For every sparsity degree s > 2, the complexity of Algorithm 1-bis is

O
(
Q(N(s− 1) + (s− 1)3) + 4QN(N − (s − 1))

)
.

Proof. Let x belongs to the set Σ
(s−1)
max which denotes a set of Q vectors of size s − 1. The

computation of d(x) has a complexity of O(N(s − 1) + (s − 1)3). This computation has to be
realized Q times. Moreover, in order to extract the R vectors with the largest Dx, the computation
of ‖d(x)‖22+| 〈d(x),ai〉−o|2, which has a complexity of O(2N), has to be proceeded 2Q(N−(s−1))
times.

In the following we propose an efficient extension of Algorithm 1 in the case of an arbitrary
matrix A In this general case, the accelerated version of Algorithm 1 can no longer be used due
to the fact that the norms ‖ãi‖22 can no longer be discarded. However, in order to reduce the
computational cost of Algorithm 1 (stated in Proposition 2.1), we consider Eq. (6) and derive the
closed form of ‖ãi‖22.

Proposition 2.3 Let j ∈ {1, . . . , N} \ I and ãj ∈ R
M such that

1. ãj ∈ Span (ai, i ∈ I ∪ {j}),

2. For every i ∈ I, 〈ãj,ai〉 = 0,

3. 〈ãj,aj〉 = 1,

then, ãj can be expressed as follows:

ãj =
aj − PAI

aj

〈aj,aj − PAI
aj〉

. (7)

Proof. For every ãj ∈ R
M , it exists κ ∈ R and a ∈ R

M such that ãj = κa. Assumptions (i) and
(ii) yield to

a = aj − PAI
aj. (8)

From Assumption 3., we can write 〈κa,aj〉 = 1, and then

κ =
1

〈a,aj〉
. (9)
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The combination of (8) and (9) leads to (7).

The computation of d(x̃) can thus be expressed as a function of d(x) and ãj . For each sparsity
degree s in Algorithm 1, this expression leads to the computation of Q matrix inversions of size
(s− 1)× (s− 1) rather than Q× (N − s) matrix inversions of size s× s. The proposed algorithm
is detailed in Algorithm 2 and the associated computational cost is specified in Proposition 2.4.

Algorithm 2 Extract sparse vectors with large Dx for deterministic matrices.

Set the pruning rate Q and the extension rate R,
Set the sparsity degree s,

Set Σ
(1)
max = {e1, . . . ,eN},

For s = 2, . . . , S

Σmax = ∅,
For every x ∈ Σ

(s−1)
max

Compute the matrix inversion involved in (7)

(Î , ô) = argmax[R]

i/∈I(x);
o∈{−1,+1}

‖d(x)‖22 + ‖ãi‖22| 〈d(x),ai〉 − o|2

For j ∈ {1, . . . , R}
⌊ Σmax = Σmax ∪ {x+ ôjeÎj}

Set Σ
(s)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

Proposition 2.4 For every sparsity degree s > 2, the complexity of the s-th step in Algorithm 2
is

O
(
Q(N(s − 1) + (s− 1)3) + 2Q(N − (s− 1))(N(s + 4))

)
.

Proof. Let x belongs to the set Σ
(s−1)
max which denotes a set of Q vectors of size k−1. The complexity

of AI(A
∗
IAI)

−1 has a complexity of O(N(s − 1) + (s − 1)3). This computation has to be done
Q times. Moreover, in order to extract the R vectors with the largest Dx, the computation of
‖d(x)‖22 + ‖ãi‖22| 〈d(x),ai〉 − o|2 requires 2N +N(s+ 2) operations which are proceeded 2Q(N −
(s − 1)) times.

Note that this complexity is significantly lower than in Algorithm 1, as it no longer has the
fourth degree term.

Remark 2.5 Note that the “minimum version of Algorithm 2” is presented in Algorithm 3. This
algorithm makes it possible to extract sparse vectors with small Dx, which leads to ℓ1-identifiable
vectors. The complexity of each iteration is similar to Algorithm 2.

Remark 2.6 In practice the inverse of A∗
IAI can be computed in different ways, with time-

computational cost less than s3 as the sparsity s increases. To do so, one could use for instance
the Schur decomposition to compute inverses at the s-th step from the inverse already computed
at the step s− 1. However, such a solution would require to keep in memory Q matrices (A∗

IAI)
−1
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Algorithm 3 Extract sparse vectors with small Dx for deterministic matrices.

Set the pruning rate Q and the extension rate R,
Set the sparsity degree s,

Set Σ
(1)
max = {e1, . . . ,eN},

For s = 2, . . . , S

Σmin = ∅,
For every x ∈ Σ

(s−1)
min

Compute the matrix inversion involved in (7)

(Î , ô) = argmin[R]

i/∈I(x);
o∈{−1,+1}

‖d(x)‖22 + ‖ãi‖22| 〈d(x),ai〉 − o|2

For j ∈ {1, . . . , R}
⌊ Σmin = Σmin ∪ {x+ ôjeÎj}

Set Σ
(s)
min = argmin[Q]

x∈Σmin

‖d(x)‖2

of size s at each step s of the algorithm. Since such trade-offs may or not be beneficial for various
implementations, we evaluate, as a reference, the computational cost for Algorithms 1, 1-bis and
2 with the s3 term, corresponding to a standard (non-iterative) inversion for each step s.

Remark 2.7 In Figure 2 we highlight the behaviour of the complexity according to different spar-
sity regimes. The complexity of Algorithm 1 is plotted in black, the complexity for the accelerated
version in the random case in represented by the blue line and the red one denotes the complexity
of proposed algorithm i.e. Algorithm 2. It clearly appears that for small regime of sparsity i.e.
s << N Algorithm 1 and 2 have a similar behaviour while for s greater than

√
N Algorithm 2

outperforms Algorithm 1. The same behaviour is observed for different values of N . In this figure
N = 2500.

0 200 400 600 800 1000 1200

10
11

10
12

10
13

10
14

10
15

10
16

Figure 2: Graphical comparison of the complexities as a fonction of the sparsity when N = 2500.
The complexity of Algorithm 1 is plotted in black, the complexity for the accelerated version in
the random case in represented by the blue line and the red one denotes the complexity of the
proposed algorithm i.e. Algorithm 2.
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Algorithm 2 allows us to extract the s-sparse vectors with the largest value of Dx. It results

that if the vector x ∈ Σ
(s)
max having the largest Dx value cannot be recovered by ℓ1-minimization,

a fair estimation of the sparsity degree s for which every s-sparse vectors can be reconstructed by
ℓ1-minimization from y = Ax is the largest s′ < s. The algorithm to extract this approximated
sparsity is summed up by Algorithm 4.

Algorithm 4 Extract sparsity.

0- Set s = 2.
1- Extract Σ

(s)
max with Algorithm 2.

2- Test the recovery of the vector x ∈ Σ
(s)
max with the largest

Dx value: Run a ℓ1-minimization algorithm with y =
Ax in order to obtain x̂.

3- If x̂ = x, set s := s+ 1 and go to Step 1.
If x̂ 6= x, an good approximation of the sparsity degree
for which every s-sparse vectors can be recovered by ℓ1-
minimization is the largest s′ < s.

3 Noisy case

As mentioned in the introduction, using first order necessary condition and the sub-differential of
the ℓ1 norm, Fuchs [19] and Tropp [33] derived sparse ℓ1-recovery conditions in the noisy case. In
this section we extend their results in order to control the reconstruction error in the noisy case.
The first result provides guarantees on the support of the solution while the second one does not
have this support guaranty, but it takes into account the sign of the solution, which may allow to
relax the maximal sparsity upper bound.

The arguments in the proofs of these results are similar to the ideas raised in [33], but since
the context here is slightly different we give the detailed proofs for sake of completeness.

Proposition 3.1 Let I ⊂ {1, . . . , N}, |I| = s, such that AI is full rank, and let y = Ax+ n for
some vector x with support I. Denote J = {1, . . . , N} \ I,

ERC(I) = max
j∈J

‖(A∗
IAI)

−1A∗
Iaj‖1, (10)

and suppose that:

(i) ERC(I) < 1,

(ii) for every ε > 0 such that γ =
maxj∈J ‖aj‖2
1−ERC(I) ε and ‖n‖2 < ε.

Then the ℓ1 minimization problem (4) has a unique solution x̂ with the following properties:

1. the support of x̂ is included in the support of x,
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2. the error resulting from the noise verifies:

‖x̂− x‖2 ≤
(
λmin(A

∗
IAI)

)−1

(
‖A∗

In‖2 +
√

|I|maxj∈J ‖aj‖2
1− ERC(I)

ε

)
.

Proof. We first consider the problem:

û = argmin
u∈R|I|

1

2
‖y −AIu‖22 + γ‖u‖1, (11)

and let ũ ∈ R
K be the extension of the vector û in R

N by adding zeros at the locations J =
{1, . . . , N} \ I.

Considering assumptions (i) and (ii), we want to prove that ũ = x̂. Let I0 ⊂ I denote the
non-zero components of ũ and J0 = {1, . . . , N} \ I0. According to Eq. (11), we have

A∗
I0(y −AI û) = γ sign(ûI0), (12)

and
(∀i ∈ I ∩ J0), |a∗

i (y −AI û)| ≤ γ. (13)

The combination of Eqs. (12) and (13) leads to

A∗
I0(y −Aũ) = A∗

I0(y −AI û)

= γ sign(ûI0),

= γ sign(ũI0), (14)

and, for every i ∈ I ∩ J0,
|a∗

i (y −Aũ)| = |a∗
i (y −AI û)| ≤ γ. (15)

Let us also note that
|a∗

j(PAI
(y)−AI û)| ≤ γERC(I). (16)

In fact, for any z in the range of AI one has

max
j /∈I

|a∗
jz| = max

j /∈I
|a∗

jAI(A
∗
IAI)

−1A∗
Iz|

≤ max
j /∈I

∥∥a∗
jAI(A

∗
IAI)

−1
∥∥
1

∥∥A∗
Iz
∥∥
∞

= ERC(I)
∥∥A∗

Iz
∥∥
∞

(17)

This immediately implies (16) by taking z = PAI
(y)−AI û and using (14).

Now, for every j ∈ J ,

|a∗
j(y −Aũ)| = |a∗

j(y −AI û)|
= |a∗

j

(
PAI

(y) + PAI
(y)−AI û

)
|

≤ |a∗
jPAI

(n)|+ |a∗
j

(
PAI

(y)−AI û
)
|

≤ |a∗
jPAI

(n)|+ γERC(I)

≤ ‖aj‖2‖PAI
(n)‖2 + γERC(I)

≤ εmax
j∈J

‖aj‖2 + γERC(I) (18)
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Eq. (18) and assumption (ii) yield, for every j ∈ J ,

|a∗
j(y −Aũ)| ≤ γ (19)

and from Eqs. (13), (14), (19), and AI injectivity, we can conclude that ũ = x̂.

To check that ũ is unique, suppose ṽ is another solution of the ℓ1-minimization minimization
problem (4). Then y = Aũ = Aṽ and, moreover, both ũ and ṽ are supported on I. But there A

coincides with AI , which is full rank, thus ũ and ṽ necessarily coincide.

The last part of this proof concerns the control of the error in ℓ2-norm. Let ỹ denote the
orthogonal projection of y onto the range of AI ,

ỹ = PAI
y, (20)

and let

x̃ = (A∗
IAI)

−1A∗
Iy

= xI + (A∗
IAI)

−1A∗
In. (21)

Since AI is full rank, x̃ is the unique vector whose image by AI is ỹ. Locally, the solution of the
minimization problem (11) is such that:

û = (A∗
IAI)

−1A∗
Iy − γ(A∗

IAI)
−1s, (22)

where s = (sign(ũi))i∈I . Regarding Eq. (22), we can write

‖x̃− û‖2 ≤ γmax
s,I

‖(A∗
IAI))

−1s‖

≤ γ
√

|I|(λmin(A
∗
IAI))

−1. (23)

Finally,

‖x− x̂‖2 = ‖x− ũ‖2
= ‖xI − û‖2
≤ ‖xI − x̃‖2 + ‖x̃− û‖2
≤ ‖(A∗

IAI)
−1A∗

In‖2 + γ
√

|I|(λmin(A
∗
IAI))

−1

Considering assumption (ii) and taking into account that

‖(A∗
IAI)

−1A∗
In‖2 ≤ (λmin(A

∗
IAI))

−1‖A∗
In‖2, (24)

the proof is complete.

The second result gives also a bound of the error between the objective vector x and the
solution of (2), under a weaker assumption than ERC < 1.
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Proposition 3.2 Let I ⊂ {1, . . . , N}, |I| = s, such that AI is full rank, y = Ax + n for some
x with support I and let J = {1, . . . , N} \ I. If, for every j ∈ J , |a∗

jd(x)| < 1, with d(x) =

AI(A
∗
IAI)

−1 sign(xI), then, all the solution x̂ of the ℓ1-minimization problem (4) satisfy

‖x̂− x‖2 ≤
(
‖n‖2 +

γ

2
‖d(x)‖2

)(
2‖(A∗

IAI)
−1A∗

I‖2

+
1 + ‖(A∗

IAI)
−1A∗

I‖2‖AJ‖2
1−maxj∈J |a∗

jd(x)|
(‖n‖2

γ
+

‖d(x)‖2
2

))

Proof. It follows [20, Proposition 3.13] with the dual certificate η = d(x), δ = ‖n‖2, and C = γ
‖n‖2

.

Let us remark that, in contrast to Proposition 3.1, the sign of x appears in the hypothesis
of the latter proposition, which makes it a weaker requirement than ERC < 1. This means that
the maximal sparsity for which the condition in Proposition 3.2 holds is higher than the maximal
sparsity required so that the exact recovery coefficient be less than 1. As such, whenever one
looks only for positive solutions x (as in tomography applications where data are positive) the two
propositions give similar sparsity bounds.

One can also remark that Proposition 3.2 does not require an assumption on γ contrary to
Proposition 3.1. The consequence of this is twofold: first, the minimizer in Proposition 3.2 is not
unique, unlike Proposition 3.1, and second, there is no guarantee on partial support recovery in
Proposition 3.2, while this is true for Proposition 3.1.

Moreover, one can note that Proposition 3.2 gives a bound on the distance of a point x to the
set of minimizers, which is non-empty.

4 Experimental results for tomography-like experiments

In this part, we evaluate the theoretical results we have proposed in the tomography context. The
goal consists to reconstruct an image from its line integral measurements i.e. views. One would
like to reconstruct a high-resolution image with a minimal set of measured data. This question
was already addressed in a seminal work by Cormack: “In practice one can make only a finite
number of measurements with beams of finite width, and the question which arises is how many
observations should be made, and how should they be related to each other in order to reconstruct
the object” [10]. Cormack explored geometric arguments while further works used two-dimensional
sampling theory [26, 29, 17]. Here, we address this question from a compressed sensing point of
view.

We denote θ = (cosϕ, sinϕ) the unit vector in R
2 with polar angle ϕ and θ⊥ = (cosϕ,− sinϕ).

We assume that the image to be reconstructed x ∈ C∞
0 (Ω), i.e. x is infinitely differentiable and

vanishes outside the unit disk Ω of R2. The 2-D Radon transform maps a density function x into
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its line integral such that:

Rx(ϕ, s) =

∫

R

x(sθ + tθ⊥)dt. (25)

The goal of X-ray tomography is to reconsruct an approximation of x from sampled values of Rx.

In the following, the sensing matrix A consists in vertically stacked discrete Radon transforms
with the MATLAB c© implementation. The size N of A is the size of the discrete data measured.
The number M of lines of A is the product between the number of polar angles (views) and the
number of beams in the discrete Radon transform, taken at about twice the data’s resolution.

As stated in the previous sections, we simplify the real noise degradation model, which is
multiplicative, by an additive noise in y = Ax + n. From a variational point of view, taking
into account Poisson multiplicative noise may lead to replace the quadratic data fidelity term in
(2)-(4) with a Kullback-Leibler divergence. This can be explained through a MAP formulation
where the likelihood models Poisson distribution. However for a low noise level (small value of
σ), the improvement obtained by considering the Poisson antilog-likelihood rather than ℓ2 norm is
not clear [31]. In our experiments we focus on cases where the noise has a small variance. Dealing
with ℓ2-norm rather than Kullback-Leibler divergence does not appear unrealistic.

The numerical results are organized as follows: (i) we first compare the complexity of the
proposed algorithm to the state-of-the-art algorithms through simulated data, (ii) we compare
the sparsity bound estimated by the proposed algorithm to the sparsity lower bounds given by
classical methods, based on coherence and ERC, (iii) we focus on the performances of a uniform
sampling versus a random sampling for a tomography measurement matrix, defined from a uniform
or random selection of the polar angles, and (iv) we finally use the bound in Proposition 5 in order
to estimate an upper sparsity bound for ℓ1-recovery in the noisy case.

4.1 Evaluation of the greedy algorithms

First, the performance of the proposed greedy algorithm in terms of computational complexity
and of maximum extracted Dx values is evaluated.

We compare the original algorithm (Algorithm 1), the accelerated version of previous one
designed for random matrices (Algorithm 1-bis), and the proposed fast version devoted to the
deterministic matrices (Algorithm 2). The evaluation is carried out both in a context of tomography
and of random matrices, i.e. A denotes either a Radon transform where N = 20×20 and M = 198
(that corresponds to 4 angles) or a random matrix with the same size. The pruning rate Q and
the extension rate R are fixed to Q = N and R = 1. The results are presented in Figure 3.
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Figure 3: Algorihm 1 (solid black), Algorithm 1-bis (dash-dotted blue), Algorithm 2 (dash-dotted
red). The top figures present the results obtained with a tomography-like matrix while the bottom
figures illustrate the results for a normalized random matrix. On the left, the figures give the per-
formance in term of maximum extracted Dx values while the right figures present the performance
in term of computational time.

One can observe that in a deterministic context (top figures), the extraction performance i.e.
find sparse vectors with large Dx (left figure) of Algorithm 2 are similar to those of Algorithm 1
with a much better convergence rate (right figure) while the extraction performance is better
than the accelerated version considering Algorithm 1-bis. The saving computational time can be
counted up in minutes. However, note that in a random context (bottom figures), the proposed
approach leads to smaller improvement. To sum up, the obtained results illustrate the relevance of
the proposed algorithm in order to easily handle deterministic matrices with higher dimensionality.
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4.2 Use Algorithm 2 in order to deal with noisy data and positivity

It appears that some materials which requires to be studied through a tomographic process exhibit
sparse properties, which means that the vector x is positive. The goal of this experiment is to
design the measurement matrix A i.e. find the adapted number of views according to a given
sparsity degree. Due to the positivity of the data, we proceed Algorithm 2 with o = +1.

The experiments have been held for images of size N = 32× 32. We evaluate the performance
for different designs of the sensing matrix. For instance, we consider the case where the angle
between two views is fixed but also when the angle are randomly selected. Moreover, the case of
2 views (M = 98), 4 views (M = 196), and 6 views (M = 294) are studied. The pruning rate Q
and the extension rate R are fixed to Q = N and R = 1.

In these experiments the ℓ1-minimization algorithm is FISTA [3] and the stopping criterion
takes in consideration the evolution of the relative error between x and x̂ (< 10−3) as well as the
iteration number (≤ 104).

Comparison with the state-of-the-art methods – In Table 1, we compare the sparsity degree
extracted with the proposed method i.e. Algorithm 4 and the sparsity obtained with the state of
the art methods (coherence and ERC) in the noiseless case.

The first row presents the sparsity obtained with the coherence method [19], computed as in
[21, Theorem 1]. The second row gives the sparsity obtained in order to have ERC(I) < 1 (cf.
Proposition 3.1). Note that ERC(I) is NP-hard to compute but here we consider the support I

associated to x ∈ Σ
(s)
max with the largest Dx value, which is extracted with Algorithm 2. The last

row presents the sparsity degree extracted with the proposed approach described in Algorithm 4.
Note that the results obtained with RIP are not presented here because it leads to a sparsity
smaller than 1.

The proposed method allows us to reach higher sparsity degree. From this table, it is possible
to know the best design of A according to a given sparsity degree. For instance, according to a
sparsity of 15, the best design for the tomographic matrix involves 4 views.

Random versus uniform measurements – The randomness has been often addressed in the
literature of compressed sensing for tomography [7, 25, 27]. Consequently we propose to evaluate
the impact of the tomography sampling, i.e. uniformly or randomly chosen angles of view, on the
sparsity extracted with Algorithm 4.

In Table 2, the first row gives the sparsity in a context of a uniform sampling. The tenth
following rows present the sparsity extracted with Algorithm 4 when the angles are randomly
selected. The last three rows present the minimum, maximum, and mean sparsity according to
the random sampling results.

It appears that the difference in term of extracted sparsity between a random selection of the
polar angles and a uniform one is not significant. According to the work by Arias-Castro et al.
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2 views 4 views 6 views
M = 98 M = 196 M = 294

Sparsity 1 1 2
(Coherence)

Sparsity 4 10 11
(ERC < 1)

Sparsity 10 32 50

(Proposed method)

Table 1: Sparsity s allowing us to recover every s-sparse vectors by ℓ1-minimization in the absence
of noise consideration. The last row presents the sparsity extracted with Algorithm 4. The results
are given for three different configurations of the tomography-like matrix A.

[1], there exist natural classes of sparse signals for which adaptivity would not improve the bounds
on non-adaptivity. This is the case for the class of signals that has been considered in this simu-
lations (i.e signal without any structure). However, one can think that for some specific class of
signals, adaptivity (i.e. a judicious choice in the polar angles) could improve the performance on
non-adaptivity (i.e. a random angle selection).

Limitations of the greedy algorithm – We point out the following two limitations in the
proposed approach:

1. Algorithm 2 (as well as Algorithm 1 or Algorithm 1-bis) is not guaranteed to find the largest
Dx for small values of R and Q. For some given sparsity degree s, this may happen if F
is the s-dimensional face of the polytope that is the closest to the origin among all other
s-faces. Now it might happen that some sub-faces of F , say F ′ of dimension s′ < s, are not
the closest to the origin among all the s′-dimensional faces of the polytope. If this happens,
since the algorithm retains only vectors with increasing support, a suited minimal choice at
one step s′ may induce a wrong (non-minimal) choice at a later stage s. This is one tradeoff
for the complexity gain.

However, the impact of this trade-off seems of little importance, as the algorithms clearly
outperform a random search. In order to analyse this fact, we generate 100 vectors from
a randomly generated support I such that |I| = s with s = 10, s = 32, and s = 50. In

Table 3, we present the maximum Dx value for vectors in Σ
(s)
max extracted with Algorithm 2

and for the random sparse vectors. We can clearly observe that for these tomography-like
experiments, Algorithm 2 provides vectors with the largest Dx value.
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2 views 4 views 6 views
M = 98 M = 196 M = 294

Uniform sampling 10 32 50

Random sampling no1 10 34 54

Random sampling no2 14 25 47

Random sampling no3 8 26 60

Random sampling no4 9 27 58

Random sampling no5 10 29 48

Random sampling no6 7 18 50

Random sampling no7 4 27 67

Random sampling no8 11 43 66

Random sampling no9 11 23 40

Random sampling no10 12 44 50

Random sampling 4 18 40
(Minimum)

Random sampling 9 29 54

(Mean)

Random sampling 14 44 67
(Maximum)

Table 2: Sparsity extracted with Algorithm 4 for a uniform or a random sampling of the tomog-
raphy matrix.
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2. It is not obvious that we have a uniform recovery for a given A using ℓ1-minimization. Indeed,
whether a collection of vertices in the polytope forms a face that does not solely depend on
how far their convex hull lies from the origin, one can easily define polytopes for which some
faces are closer to the origin, while convex hulls of some other vertices lie farther but still
remain inside the polytope.

Table 4 aims to illustrate the second limitation. This table summarizes the reconstruction
error obtained by ℓ1-minimization for vectors in Σ

(s)
max (i.e. found by the algorithm) and for

vectors characterized by a randomly generated support. We can remark that for M = 98,
even if Algorithm 2 allows to reach vectors with the largest Dx value, we can randomly
generate non-ℓ1-identifiable vectors. This interesting result illustrates the fact that, for some
particular shapes of the polytope P , the proposed method has to be improved.

Noisy measurements – In Table 5, we evaluate the maximal sparsity degree for exact recovery
in the noisy case. For such a purpose we computed the upper bound of ‖x̂ − x‖2. This bound
requires the knowledge of the support I, on which quantities like ERC(I) or ‖A∗

In‖2 depend.

The tested support I corresponds to the vector x ∈ Σ
(s)
max with the largest Dx, extracted with

Algorithm 2. For this support and for some fixed variance σ of the additive noise, we generate
100 random realizations of a vector n ∼ N (0, σ2). For each realization we compute the mean
support-depending quantities involved in the upper bound and then estimate an approximated
value of the error. This task is carried out for matrices of different size i.e. number of polar angle
views, for supports I of different sizes and for different values of the noise variance. The results
are gathered in Table 5. We can observe that the first row leads to the same sparsity degree that
the one obtained in Table 1 when sparsity is extracted with ERC. Moreover, it can be observed
that in the presence of noise (cf. rows 2 to 5 in Table 5) the sparsity degree decreases in order to
achieve a smallest error.

2 views 4 views 6 views
M = 98 M = 196 M = 294

Maximum Dx value (s = 10) (s = 32) (s = 50)

for x ∈ Σ
(s)
max 3.15 3.14 2.52

Maximum Dx

value for x (s = 10) (s = 32) (s = 50)
having a randomly 2.81 2.62 2.25

generated support

Table 3: Maximum Dx value when x is extracted with Algorithm 2 or when x are generated
randomly.
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2 views 4 views 6 views
M = 98 M = 196 M = 294

Reconstruction error (s = 10) (s = 32) (s = 50)

for x ∈ Σ
(s)
max < 10−3 < 10−3 < 10−3

Reconstruction error (s = 10) (s = 32) (s = 50)
for x randomly < 1 < 10−3 < 10−3

generated

Table 4: Reconstruction error when x is extracted with Algorithm 2 or when x are generated
randomly.

2 views 4 views 6 views
(M = 98) (M = 196) (M = 294)

Error =0
σ2 = 0 4 10 11

Error ≤ 10−2

σ2 = 10−4 4 10 11

Error ≤ 10−3

σ2 = 10−4 1 4 5

Error ≤ 10−1

σ2 = 10−3 4 10 11

Error ≤ 10−2

σ2 = 10−3 1 4 5

Table 5: Sparsity s allowing us to recover every s-sparse vectors by ℓ1-minimization with noise
consideration. The results are obtained from Proposition 3.1 where I denotes the support of the

vector x ∈ Σ
(s)
max with the largest Dx. Results for three different configurations of the tomography-

like matrix A.

5 Conclusion

This work presents new theoretical results and algorithms for ℓ1-recovery conditions in a deter-
ministic context in order to (i) improve the state-of-the-art methods in term of extracted sparsity
degree and (ii) easily bound the reconstruction error. More specifically, we propose an efficient
method to obtain an upper bound of the sparsity degree s for which every s-sparse vector can be
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reconstructed by ℓ1-minimization according to a specific measurement matrix. An efficient greedy
algorithm is proposed in order to deal with deterministic matrices. Moreover, the robustness to
noise is studied and numerical experiments based on tomography-like sensing matrix illustrate the
theoretical results.

We should notice that this approach can be considered for other contexts in inverse problems
such as restoration or inpainting.
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