When is it no longer possible to estimate a compound Poisson process? - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2014

When is it no longer possible to estimate a compound Poisson process?

Céline Duval
  • Fonction : Auteur
  • PersonId : 947412

Résumé

We consider centered compound Poisson processes with fi nite variance, discretely observed over [0; T] and let the sampling rate $\Delta$ go to infinity as T tends to infinity. From the central limit theorem, the law of each increment converges to a Gaussian variable. Then, it should not be possible to estimate more than one parameter at the limit. First, from the study of a parametric example we identify two regimes and observe how the Fisher information degenerates. Then, we generalize these results to the class of compound Poisson processes. We establish a lower bound showing that consistent estimation is impossible when $\Delta$ grows faster than $\sqrt{T}$. We also prove an asymptotic equivalence result, from which we identify, for instance, regimes where the increments cannot be distinguished from Gaussian variables.
Fichier principal
Vignette du fichier
Duval_Halv2.pdf (327.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00877195 , version 1 (27-10-2013)
hal-00877195 , version 2 (11-08-2014)

Identifiants

Citer

Céline Duval. When is it no longer possible to estimate a compound Poisson process?. Electronic Journal of Statistics , 2014, 8, pp.274-301. ⟨10.1214/14-EJS885⟩. ⟨hal-00877195v2⟩
184 Consultations
212 Téléchargements

Altmetric

Partager

More