Asymptotic Approximation of Optimal Quantizers for Estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Asymptotic Approximation of Optimal Quantizers for Estimation

Résumé

In this paper, the asymptotic approximation of the Fisher information for the estimation of a scalar parameter based on quantized measurements is studied. As the number of quantization intervals tends to infinity, it is shown that the loss of Fisher information due to quantization decreases exponentially as a function of the number of quantization bits. The optimal quantization interval density and the corresponding maximum Fisher information are obtained. Comparison between optimal nonuniform and uniform quantization for the location estimation problem indicates that nonuniform quantization is slightly better. At the end of the paper, an adaptive algorithm for jointly estimating and setting the thresholds is used to show that the theoretical results can be approximately obtained in practice.
Fichier principal
Vignette du fichier
asymptotic_approximation.pdf (117.53 Ko) Télécharger le fichier
asymptotic_approximation_poster.pdf (213.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Autre

Dates et versions

hal-00875978 , version 1 (23-10-2013)

Identifiants

  • HAL Id : hal-00875978 , version 1

Citer

Rodrigo Cabral Farias, Jean-Marc Brossier. Asymptotic Approximation of Optimal Quantizers for Estimation. ICASSP 2013 - 38th IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013, Vancouver, Canada. pp.SPTM-P13.8. ⟨hal-00875978⟩
281 Consultations
763 Téléchargements

Partager

More