Graph-Based Approaches to Clustering Network-Constrained Trajectory Data - Archive ouverte HAL Access content directly
Book Sections Year : 2013

Graph-Based Approaches to Clustering Network-Constrained Trajectory Data


Clustering trajectory data attracted considerable attention in the last few years. Most of prior work assumed that moving objects can move freely in an euclidean space and did not consider the eventual presence of an underlying road network and its influence on evaluating the similarity between trajectories. In this paper, we present an approach to clustering such network-constrained trajectory data. More precisely we aim at discovering groups of road segments that are often travelled by the same trajectories. To achieve this end, we model the interactions between segments w.r.t. their similarity as a weighted graph to which we apply a community detection algorithm to discover meaningful clusters. We showcase our proposition through experimental results obtained on synthetic datasets.
Fichier principal
Vignette du fichier
nfmcp2012extended.pdf (1.03 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00874886 , version 1 (18-10-2013)



Mohamed Khalil El Mahrsi, Fabrice Rossi. Graph-Based Approaches to Clustering Network-Constrained Trajectory Data. Appice, Annalisa and Ceci, Michelangelo and Loglisci, Corrado and Manco, Giuseppe and Masciari, Elio and Ras, Zbigniew. New Frontiers in Mining Complex Patterns, Springer Berlin Heidelberg, pp.124-137, 2013, Lecture Notes in Computer Science, 978-3-642-37381-7. ⟨10.1007/978-3-642-37382-4_9⟩. ⟨hal-00874886⟩
280 View
389 Download



Gmail Facebook X LinkedIn More