Exact and approximation algorithms for densest k-subgraph - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Exact and approximation algorithms for densest k-subgraph

Résumé

The densest k-subgraph problem is a generalization of the maximum clique problem, in which we are given a graph G and a positive integer k, and we search among the subsets of k vertices of G one inducing a maximum number of edges. In this paper, we present algorithms for finding exact solutions of densest k-subgraph improving the standard exponential time complexity of $O^*(2^n)$ and using polynomial space. Two FPT algorithms are also proposed; the first considers as parameter the treewidth of the input graph and uses exponential space, while the second is parameterized by the size of the minimum vertex cover and uses polynomial space. Finally, we propose several approximation algorithms running in moderately exponential or parameterized time.
Fichier principal
Vignette du fichier
cahier_324.pdf (1.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00874586 , version 1 (18-10-2013)

Identifiants

  • HAL Id : hal-00874586 , version 1

Citer

Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli, Ioannis Milis, Vangelis Paschos. Exact and approximation algorithms for densest k-subgraph. 2012. ⟨hal-00874586⟩
314 Consultations
1711 Téléchargements

Partager

More