Error bounds for the (KdV)/(KP-I) and (gKdV)/(gKP-I) asymptotic regime for Nonlinear Schrödinger type Equations - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2014

Error bounds for the (KdV)/(KP-I) and (gKdV)/(gKP-I) asymptotic regime for Nonlinear Schrödinger type Equations

David Chiron

Résumé

We consider the (KdV)/(KP-I) asymptotic regime for the Nonlinear Schrödinger Equation with a general nonlinearity. In a previous work, we have proved the convergence to the Korteweg-de Vries equation (in dimension 1) and to the Kadomtsev-Petviashvili equation (in higher dimensions) by a compactness argument. We propose a weakly transverse Boussinesq type system formally equivalent to the (KdV)/(KP-I) equation in the spirit of the work of Lannes and Saut, and then prove a comparison result with quantitative error estimates. For either suitable nonlinearities for (NLS) either a Landau-Lifshitz type equation, we derive a (mKdV)/(mKP-I) equation involving cubic nonlinearity. We then give a partial result justifying this asymptotic limit.
Fichier principal
Vignette du fichier
gKP.pdf (611.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00874581 , version 1 (18-10-2013)

Identifiants

  • HAL Id : hal-00874581 , version 1

Citer

David Chiron. Error bounds for the (KdV)/(KP-I) and (gKdV)/(gKP-I) asymptotic regime for Nonlinear Schrödinger type Equations. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2014, 31 (6), pp.1175-1230. ⟨hal-00874581⟩
114 Consultations
154 Téléchargements

Partager

More